×

Flow control on the basis of a Featflow-Matlab coupling. (English) Zbl 1396.76033

King, Rudibert (ed.), Active flow control. Papers contributed to the conference ‘Active flow control 2006’, Berlin, Germany, September 27–29, 2006. Berlin: Springer (ISBN 978-3-540-71438-5/hbk). Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) 95, 325-338 (2007).
Summary: For the model-based active control of three-dimensional flows at high Reynolds numbers in real time, low-dimensional models of the flow dynamics and efficient actuator and sensor concepts are required. Numerous successful approaches to derive such models have been proposed in the literature.
We propose a software environment for a comfortable and performant testing of control, actuator and sensor concepts which may be based on such models. It is realized by providing an easily manageable Matlab control interface for the \(\kappa\)-\(\varepsilon\)-model from the Featflow CFD package. Potentials and limitations of this tool are discussed by considering exemplarily the control of the recirculation bubble behind a backward facing step.
For the entire collection see [Zbl 1129.76004].

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
76F70 Control of turbulent flows
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76M10 Finite element methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] [1]S. Turek et al.: “FEATFLOW. Finite element software for the incompressible Navier-Stokes equations: User Manual, Release 1.2”, 1999. (www.featflow.de)
[2] [2]The MathWorks, Inc., Cochituate Place, 24 Prime ParkWay, Natick, Mass, 01760.
[3] [3]P. Benner, V. Mehrmann, V. Sima, S. Van Huffel und A. Varga, “SLICOT-A Subroutine Library in Systems and Control Theory”, Applied and Computational Control, Signals and Circuits. 1, 1999, pp. 499-532. · Zbl 1051.93500
[4] [4]M. Griebel, T. Dornseifer, T. Neunhoeffer: “Numerical Simulation in Fluid Dynamics: A Practical Introduction”. SIAM Monographs on Mathematical Modeling and Computation, 1998. · Zbl 0945.76001
[5] [5]D. Kuzmin, S. Turek: “Numerical simulation of turbulent bubbly flows”. 3rd International Symposium on Two-Phase Flow Modelling and Experimentation 2004. Editors: G.P. Celata, P.Di Marco, A. Mariani, R.K. Shah. Pisa, 2004.
[6] [6]G. Medić, B. Mohammadi: “NSIKE-an incompressible Navier-Stokes solver for unstructured meshes”. INRIA Research Report No 3644, 1999.
[7] [7]S. Turek: “Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach”. LNCSE 6, Springer, 1999. · Zbl 0930.76002
[8] [8]D. Kuzmin, R. Löhner and S. Turek (Eds.), “Flux-Corrected Transport”. Springer, 2005.
[9] [9]R. Becker, M. Garwon, C. Gutknecht, G. Bärwolff, R. King: “Robust control of separated shear flows in simulation and experiment”. Journal of Process Control 15, 2005, pp. 691-700. · doi:10.1016/j.jprocont.2004.12.001
[10] [10]M. Schmidt, A. Sokolov: “A
[11] [11]B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schonung: “Experimental and theoretical investigation of backward-facing step flow”. J. Fluid Mech. 127, 1983, pp. 473-496. · doi:10.1017/S0022112083002839
[12] [12]K. Gartling: “A Test Problem For Outflow Boundary Conditions-Flow Over a Backward Facing Step”. International Journal for Numerical Methods in Fluids 11, 1990, pp. 953-967. · doi:10.1002/fld.1650110704
[13] [13]J. Kim, P. Moin: “Application of a Fractional-StepMethod to Incompressible Navier-Stokes Equation”. Journal of Computational Physics, 59, 1985 pp. 308-314. · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[14] [14]H. Le, P. Moin, J. Kim: “Direct numerical simulation of turbulent flow over a backwardfacing step”. J. Fluid Mech. 330, 1997, pp. 349-374. · Zbl 0900.76367 · doi:10.1017/S0022112096003941
[15] [15]L. Kaiktsis, G. E. Karniadakis, S. A. Orszag: “Onset of Three-Dimensionality, Equilibria, and Early Transition in Flow over a Backward facing Step”. Journal of Fluid Mechanics, 231, 1991, pp. 501-528. · Zbl 0728.76057 · doi:10.1017/S0022112091003488
[16] [16]T. Weinkauf, H.-C. Hege, B.R. Noack, M. Schlegel, A. Dillmann: “Coherent Structures in a Transitional Flow around a Backward-Facing Step”. Physics of Fluids, 15(9), 2003.
[17] [17]M. Garwon, R. King: “A multivariable adaptive control strategy to regulate the separated flow behind a backward-facing step”. 16th IFAC World Congress, Prague, Czech Republic, July 2005.
[18] [18]L. Henning, R. King: “Multivariable closed-loop control of the reattachement length downstream of a backward-facing step”. 16th IFACWorld Congress, Praha, Czech Republic, July 2005.
[19] [19]J. Gerhard, M. Pastoor, R. King, B.R. Noack, A. Dillmann, M. Morzynski and G. Tadmor: “Model-based control of vortex shedding using low-dimensional Galerkin models”. AIAA-Paper 2003-4262, 2003.
[20] [20]O. Lehmann, D.M. Luchtenburg, B.R. Noack, R. King, M. Morzynski, G. Tadmor: “Wake stabilization using POD Galerkin models with interpolated modes”, Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, Invited Paper 1618, 2005.
[21] [21]M. Pastoor, R. King, B.R. Noack, A. Dillmann and G. Tadmor: “Model-based coherentstructure control of turbulent shear ows using low-dimensional vortex models”. AIAA-Paper 2003-4261, 2003.
[22] [22]M. Hinze: “Optimal and instantaneous control of the instationary Navier-Stokes equations”. Habilitation thesis, Fachbereich Mathematik, Technische Universität Berlin, 2000.
[23] [23]R. Glowinski: “Finite element methods for the numerical simulation of incompressible viscous flow; Introduction to the Control of the Navier-Stokes Equations”. Lectures in Applied Mathematics, 28, 1991. · Zbl 0751.76046
[24] [24]M. D. Gunzburger, S. Manservisi: “The velocity tracking problem for Navier-Stokes flows with boundary controls”. Siam J. Control and Optimization, 39, 2000, pp. 594-634. · Zbl 0991.49002 · doi:10.1137/S0363012999353771
[25] [25]M. Hinze, K. Kunisch: “Control strategies for fluid flows-optimal versus suboptimal control”. In H.G. Bock et al., editor, ENUMATH 97, 1997, pp. 351-358. · Zbl 1068.76512
[26] [26]M. Hinze, K. Kunisch: “Suboptimal Control Strategies for Backward Facing Step Flows”. Proceedings of the 15th IMACSWorld Congress on Scientific Computation, Modelling and Applied Mathematics, Editor A. Sydow, Vol. 3, 1997, pp. 53-58.
[27] [27]H. Choi, M. Hinze, K. Kunisch: “Instantaneous control of backward-facing step flows”. Appl. Numer. Math. 31, 1999, pp. 133-158. · Zbl 0939.76027 · doi:10.1016/S0168-9274(98)00131-7
[28] [28]T. R. Bewley, P. Moin, R. Temam: “DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms”. J. Fluid Mech., 447, 2001, pp. 179-225. · Zbl 1036.76027
[29] [29]K. Afanasiev, M. Hinze: “Adaptive control of a wake flow using proper orthogonal decomposition”. In Shape Optimization & Optimal Design, Lecture Notes in Pure and Applied Mathematics 216. Marcel Dekker, 2001. · Zbl 1013.76028
[30] [30]M. Hinze, K. Kunisch: “On suboptimal Control Strategies for the Navier-Stokes Equations”. ESAIM: Proceedings 4, 1998, pp. 181-198. · Zbl 0912.49019 · doi:10.1051/proc:1998028
[31] [31]K. Ito, S. S. Ravindran: “Reduced basis method for optimal control of unsteady viscous flow”. Int. J. Comput. Fluid Dyn., 15, 2001, pp. 97-113. · Zbl 1036.76011 · doi:10.1080/10618560108970021
[32] [32]S. S. Ravindran: “Control of flow separation over a forward-facing step by model reduction.” Comput. Methods Appl. Mech. Engrg. 191, 2002, pp. 4599-4617. · Zbl 1124.76304 · doi:10.1016/S0045-7825(02)00395-X
[33] [33]B. Mohammadi, O. Pironneau: “Analysis of the k-epsilon turbulence model”. Wiley, 1994.
[34] [34]L. Ljung: “System identification-Theory for the user.” Prentice Hall PTR, 1999. · Zbl 0615.93004
[35] [35]S. Skogestad, I. Postlethwaite: “Multivariable feedback control-Analysis and design”. 2 edn. John Wiley & Sons, Ltd, 2005. · Zbl 0883.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.