×

Stabilization to trajectories for parabolic equations. (English) Zbl 1396.93098

Summary: Both internal and boundary feedback exponential stabilization to trajectories for semilinear parabolic equations in a given bounded domain are addressed. The values of the controls are linear combinations of a finite number of actuators which are supported in a small region. A condition on the family of actuators is given which guarantees the local stabilizability of the control system. It is shown that a linearization-based Riccati feedback stabilizing controller can be constructed. The results of numerical simulations are presented and discussed.

MSC:

93D15 Stabilization of systems by feedback
93B52 Feedback control
35K58 Semilinear parabolic equations
93C15 Control/observation systems governed by ordinary differential equations
93B40 Computational methods in systems theory (MSC2010)
93B18 Linearizations

Software:

MORLAB; Matlab
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ammar-Khodja, F; Benabdallah, A; González-Burgos, M; Teresa, L, Recent results on the controllability of linear coupled parabolic problems: a survey, Math Control Relat Fields, 1, 267-306, (2011) · Zbl 1235.93041 · doi:10.3934/mcrf.2011.1.267
[2] Ammar-Khodja, F; Benabdallah, A; González-Burgos, M; Teresa, L, New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence, J Math Anal Appl, 444, 1071-1113, (2016) · Zbl 1342.93022 · doi:10.1016/j.jmaa.2016.06.058
[3] Auchmuty, G; Alexander, JC, \({L}^2\)-well-posedness of planar div-curl systems, Arch Ration Mech Anal, 160, 91-134, (2001) · Zbl 0995.35071 · doi:10.1007/s002050100156
[4] Auchmuty, G; Alexander, JC, \({L}^2\)-well-posedness of 3D div-curl boundary value problems, Quart Appl Math, 63, 479-508, (2005) · doi:10.1090/S0033-569X-05-00972-5
[5] Badra, M, Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system, ESAIM Control Optim Calc Var, 15, 934-968, (2009) · Zbl 1183.35216 · doi:10.1051/cocv:2008059
[6] Badra, M; Ervedoza, S; Guerrero, S, Local controllability to trajectories for non-homogeneous incompressible Navier-Stokes equations, Ann Inst H. Poincaré Anal Non Linaire, 33, 529-574, (2016) · Zbl 1339.35207 · doi:10.1016/j.anihpc.2014.11.006
[7] Badra, M; Takahashi, T, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system, SIAM J Control Optim, 49, 420-463, (2011) · Zbl 1217.93137 · doi:10.1137/090778146
[8] Balogh, A; Liu, WJ; Krstic, M, Stability enhancement by boundary control in 2-D channel flow, IEEE Trans Autom Control, 46, 1696-1711, (2001) · Zbl 1011.93061 · doi:10.1109/9.964681
[9] Barbu, V, Stabilization of Navier-Stokes equations by oblique boundary feedback controllers, SIAM J Control Optim, 50, 2288-2307, (2012) · Zbl 1292.93100 · doi:10.1137/110837164
[10] Barbu, V, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Trans Autom Control, 58, 2416-2420, (2013) · Zbl 1369.93475 · doi:10.1109/TAC.2013.2254013
[11] Barbu, V; Lasiecka, I, The unique continuations property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients, Nonlinear Anal, 75, 4384-4397, (2012) · Zbl 1246.35054 · doi:10.1016/j.na.2011.07.056
[12] Barbu, V; Lasiecka, I; Triggiani, R, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal, 64, 2704-2746, (2006) · Zbl 1098.35025 · doi:10.1016/j.na.2005.09.012
[13] Barbu, V; Rodrigues, SS; Shirikyan, A, Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J Control Optim, 49, 1454-1478, (2011) · Zbl 1231.35141 · doi:10.1137/100785739
[14] Bedivan, DM; Fix, GJ, An extension theorem for the space \({H}_{\rm div}\), Appl Math Left, 9, 17-20, (1996) · Zbl 0915.46024 · doi:10.1016/0893-9659(96)00066-3
[15] Benner P (2006) Morlab-1.0 package software. http://www.mpi-magdeburg.mpg.de/projects/morlab. Accessed 12 July 2018 · Zbl 1114.93040
[16] Benner P (2006) A matlab repository for model reduction based on spectral projection. In: Proceedings of the 2006 IEEE conference on computer aided control systems design, pp 19-24. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776618 · Zbl 1121.93064
[17] Breiten, T; Kunisch, K; Rodrigues, SS, Feedback stabilization to nonstationary solutions of a class of reaction diffusion equations of Fitzhugh-Nagumo type, SIAM J Control Optim, 55, 2684-2713, (2017) · Zbl 1370.35176 · doi:10.1137/15M1038165
[18] Buchot, JM; Raymond, JP; Tiago, J, Coupling estimation and control for a two dimensional Burgers type equation, ESAIM Control Optim Calc Var, 21, 535-560, (2015) · Zbl 1311.93032 · doi:10.1051/cocv/2014037
[19] Curtain, R; Pritchard, AJ, The infinite-dimensional Riccati equation for systems defined by evolution operators, SIAM J Control Optim, 14, 951-983, (1976) · Zbl 0352.49003 · doi:10.1137/0314061
[20] Prato, G; Ichikawa, A, Uniform asymptotic stability of evolutionary processes in a Banach space, SIAM J Control Optim, 28, 359-381, (1990) · Zbl 0692.49006 · doi:10.1137/0328019
[21] Duyckaerts, T; Zhang, X; Zuazua, E, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann Inst. H Poincaré Anal. Non Linéaire, 25, 1-41, (2008) · Zbl 1248.93031 · doi:10.1016/j.anihpc.2006.07.005
[22] Fisher, RA, The wave of advance of advantageous genes, Ann Hum. Genet., 7, 355-369, (1937) · JFM 63.1111.04 · doi:10.1111/j.1469-1809.1937.tb02153.x
[23] Fursikov, AV, Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control, J Math Fluid Mech, 3, 259-301, (2001) · Zbl 0983.93021 · doi:10.1007/PL00000972
[24] Fursikov, AV, Stabilization for the 3D Navier-Stokes system by feedback boundary control, Discrete Contin Dyn Syst, 10, 289-314, (2004) · Zbl 1174.93675 · doi:10.3934/dcds.2004.10.289
[25] Fursikov, AV; Gunzburger, MD; Hou, LS, Trace theorems for three-dimensional, time-dependent solenoidal vector fields and their applications, Trans Am. Math Soc, 354, 1079-1116, (2002) · Zbl 0988.46024 · doi:10.1090/S0002-9947-01-02865-3
[26] Fursikov AV, Imanuvilov OY (1996) Controllability of evolution equations, Lecture Notes Series, vol 34. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul
[27] Fursikov, AV; Imanuvilov, OY, Exact local controllability of two-dimensional Navier-Stokes equations, Sb Math, 187, 1355-1390, (1996) · Zbl 0869.35074 · doi:10.1070/SM1996v187n09ABEH000160
[28] González-Burgos, M; Guerrero, S; Puel, JP, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun Pure Appl Anal, 8, 311-333, (2009) · Zbl 1152.93005 · doi:10.3934/cpaa.2009.8.311
[29] Kröner A, Rodrigues SS (2015) Internal exponential stabilization to a nonstationary solution for 1D Burgers equations with piecewise constant controls. In: Proceedings of the 2015 European control conference (ECC), Linz, Austria, pp 2676-2681. https://doi.org/10.1109/ECC.2015.7330942 · Zbl 0983.93021
[30] Kröner, A; Rodrigues, SS, Remarks on the internal exponential stabilization to a nonstationary solution for 1D Burgers equations, SIAM J Control Optim, 53, 1020-1055, (2015) · Zbl 1312.93052 · doi:10.1137/140958979
[31] Li, P; Yau, ST, On the Schrödinger equation and the eigenvalue problem, Commun Math Phys, 88, 309-318, (1983) · Zbl 0554.35029 · doi:10.1007/BF01213210
[32] Lions JL, Magenes E (1972) Non-homogeneous boundary value problems and applications. Die Grundlehren Math. Wiss. Einzeldarstellungen, vol. I. Springer. https://doi.org/10.1007/978-3-642-65161-8
[33] Lions JL, Magenes E (1972) Non-homogeneous boundary value problems and applications. Die Grundlehren Math. Wiss. Einzeldarstellungen, vol. II. Springer. https://doi.org/10.1007/978-3-642-65217-2 · Zbl 0352.49003
[34] Munteanu, I, Normal feedback stabilization of periodic flows in a three-dimensional channel, Numer. Funct. Anal. Optim., 33, 611-637, (2012) · Zbl 1245.93051 · doi:10.1080/01630563.2012.662198
[35] Phan D, Rodrigues SS (2016) Stabilization to trajectories for parabolic equations. arXiv:1608.02412v2 [math.OC] · Zbl 1370.35176
[36] Raymond, JP, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM J Control Optim, 45, 790-828, (2006) · Zbl 1121.93064 · doi:10.1137/050628726
[37] Raymond, JP, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J Math Pures Appl, 87, 627-669, (2007) · Zbl 1114.93040 · doi:10.1016/j.matpur.2007.04.002
[38] Raymond, JP, Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions, Ann Inst H Poincaré Anal Non Linéaire, 24, 921-951, (2007) · Zbl 1136.35070 · doi:10.1016/j.anihpc.2006.06.008
[39] Raymond, JP; Thevenet, L, Boundary feedback stabilization of the two-dimensional Navier-Stokes equations with finite-dimensional controllers, Discrete Contin Dyn Syst, 27, 1159-1187, (2010) · Zbl 1211.93103 · doi:10.3934/dcds.2010.27.1159
[40] Rodrigues, SS, Local exact boundary controllability of 3D Navier-Stokes equations, Nonlinear Anal, 95, 175-190, (2014) · Zbl 1426.76148 · doi:10.1016/j.na.2013.09.003
[41] Rodrigues, SS, Boundary observability inequalities for the 3D Oseen-Stokes system and applications, ESAIM Control Optim Calc Var, 21, 723-756, (2015) · Zbl 1334.35252 · doi:10.1051/cocv/2014045
[42] Rodrigues SS (2018) Feedback boundary stabilization to trajectories for 3D Navier-Stokes equations. Appl Math Optim https://doi.org/10.1007/s00245-017-9474-5 (electronic) · Zbl 1369.93475
[43] Schlögl, F, Chemical reaction models for non-equilibrium phase transitions, Z. Phys., 253, 147-161, (1972) · doi:10.1007/BF01379769
[44] Taylor ME (1997) Partial differential equations I—basic theory. No. 115 in Appl Math Sci Springer. https://doi.org/10.1007/978-1-4419-7055-8 (corrected 2nd printing) · Zbl 1011.93061
[45] Temam R (1997) Infinite-dimensional dynamical systems in mechanics and physics, 2nd edn. No. 68 in Appl Math Sci, Springer. https://doi.org/10.1007/978-1-4612-0645-3 · Zbl 0871.35001
[46] Temam R (2001) Navier-Stokes equations: theory and numerical analysis. AMS Chelsea Publishing, Providence, RI, reprint of the 1984 edition. https://bookstore.ams.org/chel-343-h. Accessed 12 July 2018 · Zbl 0981.35001
[47] Ungureanu VM, Dragan V (2012) Nonlinear differential equations of Riccati type on ordered Banach spaces. In: Electron. J. Qual. Theory Differ. Equ., Proc. 9’th Coll. QTDE, 17, pp 1-22. https://doi.org/10.14232/ejqtde.2012.3.17 · Zbl 1183.35216
[48] Vazquez R, Krstic M (2005) A closed-form feedback controller for stabilization of linearized Navier-Stokes equations: the 2D Poisseuille flow. In: Proceedings 44th IEEE CDC-ECC’05, Seville, Spain, pp 7358-7365. https://doi.org/10.1109/CDC.2005.1583349
[49] Volpert, V; Petrovskii, S, Reaction-diffusion waves in biology, Phys Life Rev, 6, 267-310, (2009) · doi:10.1016/j.plrev.2009.10.002
[50] Wu, M, A note on stability of linear time-varying systems, IEEE Trans Autom Control, 19, 162, (1974) · doi:10.1109/TAC.1974.1100529
[51] Yamamoto, M, Carleman estimates for parabolic equations and applications, Inverse Probl, 25, 123013, (2009) · Zbl 1194.35512 · doi:10.1088/0266-5611/25/12/123013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.