Sun, Fenglong; Wang, Yutai; Yin, Hongjian Blow-up problems for a parabolic equation coupled with superlinear source and local linear boundary dissipation. (English) Zbl 07545064 J. Math. Anal. Appl. 514, No. 2, Article ID 126327, 17 p. (2022). MSC: 35B44 35K20 35K58 PDF BibTeX XML Cite \textit{F. Sun} et al., J. Math. Anal. Appl. 514, No. 2, Article ID 126327, 17 p. (2022; Zbl 07545064) Full Text: DOI OpenURL
Quittner, Pavol Liouville theorem and a priori estimates of radial solutions for a non-cooperative elliptic system. (English) Zbl 07544218 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112971, 11 p. (2022). MSC: 35J10 35J47 35J61 35B08 35B45 35B53 35K58 PDF BibTeX XML Cite \textit{P. Quittner}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112971, 11 p. (2022; Zbl 07544218) Full Text: DOI OpenURL
Suo, Jinzhe; Tan, Kaiyuan Fisher-KPP equation with Robin boundary conditions on the real half line. (English) Zbl 07544205 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112933, 14 p. (2022). MSC: 35B08 35B40 35C07 35K20 35K57 35K58 PDF BibTeX XML Cite \textit{J. Suo} and \textit{K. Tan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112933, 14 p. (2022; Zbl 07544205) Full Text: DOI OpenURL
Chikami, Noboru; Ikeda, Masahiro; Taniguchi, Koichi Optimal well-posedness and forward self-similar solution for the Hardy-Hénon parabolic equation in critical weighted Lebesgue spaces. (English) Zbl 07544204 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112931, 28 p. (2022). MSC: 35C06 35B40 35K15 35K58 PDF BibTeX XML Cite \textit{N. Chikami} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 222, Article ID 112931, 28 p. (2022; Zbl 07544204) Full Text: DOI OpenURL
Blessing, Jonas; Kupper, Michael Viscous Hamilton-Jacobi equations in exponential Orlicz hearts. (English. French summary) Zbl 07541879 J. Math. Pures Appl. (9) 163, 654-672 (2022). MSC: 35B45 35B65 35F21 35K15 35K58 35K91 47H20 35A01 PDF BibTeX XML Cite \textit{J. Blessing} and \textit{M. Kupper}, J. Math. Pures Appl. (9) 163, 654--672 (2022; Zbl 07541879) Full Text: DOI OpenURL
Fang, Fei; Zhang, Binlin Global existence and blow-up for semilinear parabolic equation with critical exponent in \(\mathbb{R}^N\). (English) Zbl 07541788 Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022). MSC: 35A01 35K15 35K58 PDF BibTeX XML Cite \textit{F. Fang} and \textit{B. Zhang}, Electron. J. Qual. Theory Differ. Equ. 2022, Paper No. 3, 23 p. (2022; Zbl 07541788) Full Text: DOI OpenURL
Karaman, Bahar On fractional Fitzhugh-Nagumo equation as a transmission of nerve impulses design. (English) Zbl 07541705 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022). MSC: 35C05 35K58 35R11 PDF BibTeX XML Cite \textit{B. Karaman}, Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022; Zbl 07541705) Full Text: DOI OpenURL
Colli, Pierluigi; Fukao, Takeshi; Scarpa, Luca The Cahn-Hilliard equation with forward-backward dynamic boundary condition via vanishing viscosity. (English) Zbl 07541187 SIAM J. Math. Anal. 54, No. 3, 3292-3315 (2022). MSC: 35K61 35K35 35K58 35D30 35B20 74N20 80A22 PDF BibTeX XML Cite \textit{P. Colli} et al., SIAM J. Math. Anal. 54, No. 3, 3292--3315 (2022; Zbl 07541187) Full Text: DOI OpenURL
Larkin, N. A. Existence and decay of global solutions to the three-dimensional Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation. (English) Zbl 07540666 J. Math. Anal. Appl. 514, No. 1, Article ID 126046, 18 p. (2022). MSC: 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{N. A. Larkin}, J. Math. Anal. Appl. 514, No. 1, Article ID 126046, 18 p. (2022; Zbl 07540666) Full Text: DOI OpenURL
Slodička, Marián On a semilinear parabolic problem with non-local (Bitsadze-Samarskii type) boundary conditions in more dimensions. (English) Zbl 07540503 Commun. Nonlinear Sci. Numer. Simul. 113, Article ID 106575, 16 p. (2022). MSC: 35K58 35K20 65M15 PDF BibTeX XML Cite \textit{M. Slodička}, Commun. Nonlinear Sci. Numer. Simul. 113, Article ID 106575, 16 p. (2022; Zbl 07540503) Full Text: DOI OpenURL
Hesse, Robert; Neamţu, Alexandra Global solutions for semilinear rough partial differential equations. (English) Zbl 07537127 Stoch. Dyn. 22, No. 2, Article ID 2240011, 18 p. (2022). MSC: 35K58 35K58 35R60 37L55 58J35 60H15 PDF BibTeX XML Cite \textit{R. Hesse} and \textit{A. Neamţu}, Stoch. Dyn. 22, No. 2, Article ID 2240011, 18 p. (2022; Zbl 07537127) Full Text: DOI OpenURL
Mahdi, Achache Non-autonomous maximal regularity for fractional evolution equations. (English) Zbl 07535492 J. Evol. Equ. 22, No. 2, Paper No. 48, 34 p. (2022). MSC: 35B65 35K20 35K58 35K90 35R11 PDF BibTeX XML Cite \textit{A. Mahdi}, J. Evol. Equ. 22, No. 2, Paper No. 48, 34 p. (2022; Zbl 07535492) Full Text: DOI OpenURL
Pang, Liyan; Wu, Shi-Liang Fast propagation for a reaction-diffusion equation in cylinder. (English) Zbl 07534446 Appl. Math. Lett. 129, Article ID 107963, 6 p. (2022). MSC: 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{L. Pang} and \textit{S.-L. Wu}, Appl. Math. Lett. 129, Article ID 107963, 6 p. (2022; Zbl 07534446) Full Text: DOI OpenURL
Mei, Ming; Wang, Yang Existence of traveling wave fronts of delayed Fisher-type equations with degenerate nonlinearities. (English) Zbl 07534437 Appl. Math. Lett. 129, Article ID 107937, 8 p. (2022). MSC: 35C07 35K58 35R10 PDF BibTeX XML Cite \textit{M. Mei} and \textit{Y. Wang}, Appl. Math. Lett. 129, Article ID 107937, 8 p. (2022; Zbl 07534437) Full Text: DOI OpenURL
Wu, Hui; Kong, Cuixian Differential Harnack estimate of solutions to a class of semilinear parabolic equation. (English) Zbl 07531857 Math. Inequal. Appl. 25, No. 2, 397-405 (2022). MSC: 35K58 35B44 35B45 35B50 35K15 58J35 PDF BibTeX XML Cite \textit{H. Wu} and \textit{C. Kong}, Math. Inequal. Appl. 25, No. 2, 397--405 (2022; Zbl 07531857) Full Text: DOI OpenURL
Michalak, Anna; Nowakowski, Andrzej Dual Lyapunov approach to finite time stability for parabolic PDE. (English) Zbl 07531391 Dyn. Partial Differ. Equ. 19, No. 3, 177-189 (2022). MSC: 35B35 35K20 35K58 PDF BibTeX XML Cite \textit{A. Michalak} and \textit{A. Nowakowski}, Dyn. Partial Differ. Equ. 19, No. 3, 177--189 (2022; Zbl 07531391) Full Text: DOI OpenURL
Nguyen, Huy Tuan; Tuan, Nguyen Anh; Yang, Chao Global well-posedness for fractional Sobolev-Galpern type equations. (English) Zbl 07528590 Discrete Contin. Dyn. Syst. 42, No. 6, 2637-2665 (2022). MSC: 35R11 35K20 35K58 35K70 PDF BibTeX XML Cite \textit{H. T. Nguyen} et al., Discrete Contin. Dyn. Syst. 42, No. 6, 2637--2665 (2022; Zbl 07528590) Full Text: DOI OpenURL
Lopes, Pedro T. P.; Roidos, Nikolaos Smoothness and long time existence for solutions of the Cahn-Hilliard equation on manifolds with conical singularities. (English) Zbl 07527786 Monatsh. Math. 197, No. 4, 677-716 (2022). MSC: 35K58 35B40 35B65 35K25 35K65 35K90 35K91 35R01 PDF BibTeX XML Cite \textit{P. T. P. Lopes} and \textit{N. Roidos}, Monatsh. Math. 197, No. 4, 677--716 (2022; Zbl 07527786) Full Text: DOI OpenURL
Ahmed, Bourabta; Taki-Eddine, Oussaeif; Imad, Rezzoug; Zainouba, Chebana Solvability of solution of singular and degenerate fractional nonlinear parabolic Dirichlet problems. (English) Zbl 07525099 Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 1, 105-123 (2022). MSC: 35R11 35K20 35K58 35K65 35K67 PDF BibTeX XML Cite \textit{B. Ahmed} et al., Bull. Inst. Math., Acad. Sin. (N.S.) 17, No. 1, 105--123 (2022; Zbl 07525099) Full Text: DOI OpenURL
Dunlap, Alexander; Gu, Yu A forward-backward SDE from the 2D nonlinear stochastic heat equation. (English) Zbl 07523057 Ann. Probab. 50, No. 3, 1204-1253 (2022). MSC: 35R60 35K15 35K58 60H10 60H15 PDF BibTeX XML Cite \textit{A. Dunlap} and \textit{Y. Gu}, Ann. Probab. 50, No. 3, 1204--1253 (2022; Zbl 07523057) Full Text: DOI OpenURL
Fu, Xuenan; Wu, Jia-Yong Gradient estimates for a nonlinear parabolic equation with Dirichlet boundary condition. (English) Zbl 07522820 Kodai Math. J. 45, No. 1, 96-109 (2022). MSC: 35B53 35B45 35K20 35K58 58J35 PDF BibTeX XML Cite \textit{X. Fu} and \textit{J.-Y. Wu}, Kodai Math. J. 45, No. 1, 96--109 (2022; Zbl 07522820) Full Text: DOI OpenURL
Wang, Junjun Superconvergence analysis for a semilinear parabolic equation with BDF-3 finite element method. (English) Zbl 07518208 Appl. Anal. 101, No. 6, 1822-1832 (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{J. Wang}, Appl. Anal. 101, No. 6, 1822--1832 (2022; Zbl 07518208) Full Text: DOI OpenURL
Takahashi, Jin Entire solutions with moving singularities for a semilinear heat equation with a critical exponent. (English) Zbl 07512043 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 29, 16 p. (2022). MSC: 35B08 35A01 35A21 35B33 35K20 35K58 PDF BibTeX XML Cite \textit{J. Takahashi}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 29, 16 p. (2022; Zbl 07512043) Full Text: DOI OpenURL
Fujishima, Yohei; Ioku, Norisuke Global in time solvability for a semilinear heat equation without the self-similar structure. (English) Zbl 07512037 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 23, 32 p. (2022). MSC: 35B44 35A01 35B33 35K15 35K58 35K91 46E30 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{N. Ioku}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 23, 32 p. (2022; Zbl 07512037) Full Text: DOI OpenURL
Larkin, N. A. Existence and decay of global solutions for the Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation posed on rectangles. (English) Zbl 07512034 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 20, 17 p. (2022). MSC: 35B40 35K20 35K58 35K91 35Q53 PDF BibTeX XML Cite \textit{N. A. Larkin}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 20, 17 p. (2022; Zbl 07512034) Full Text: DOI OpenURL
Souplet, Philippe On refined blowup estimates for the exponential reaction-diffusion equation. (English) Zbl 07512030 SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022). MSC: 35B44 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{P. Souplet}, SN Partial Differ. Equ. Appl. 3, No. 1, Paper No. 16, 9 p. (2022; Zbl 07512030) Full Text: DOI OpenURL
Kunisch, Karl; Priyasad, Buddhika Continuous differentiability of the value function of semilinear parabolic infinite time horizon optimal control problems on \(L^2(\Omega)\) Under control constraints. (English) Zbl 07511781 Appl. Math. Optim. 85, No. 2, Paper No. 10, 48 p. (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 49K20 35K58 49N35 49J50 35F21 PDF BibTeX XML Cite \textit{K. Kunisch} and \textit{B. Priyasad}, Appl. Math. Optim. 85, No. 2, Paper No. 10, 48 p. (2022; Zbl 07511781) Full Text: DOI OpenURL
Hernández-Santamaría, Víctor; Le Balc’h, Kévin; Peralta, Liliana Statistical null-controllability of stochastic nonlinear parabolic equations. (English) Zbl 07507360 Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 190-222 (2022). MSC: 60H15 93B05 35R60 93C20 93B07 35K55 PDF BibTeX XML Cite \textit{V. Hernández-Santamaría} et al., Stoch. Partial Differ. Equ., Anal. Comput. 10, No. 1, 190--222 (2022; Zbl 07507360) Full Text: DOI OpenURL
Aparcana, Aldryn; Castillo, Ricardo; Guzmán-Rea, Omar; Loayza, Miguel Local existence for evolution equations with nonlocal term in time and singular initial data. (English) Zbl 07506446 Z. Angew. Math. Phys. 73, No. 2, Paper No. 85, 19 p. (2022). MSC: 35R11 35B33 35K15 35K57 35K58 35R05 35R09 PDF BibTeX XML Cite \textit{A. Aparcana} et al., Z. Angew. Math. Phys. 73, No. 2, Paper No. 85, 19 p. (2022; Zbl 07506446) Full Text: DOI OpenURL
Du, Yihong Propagation and reaction-diffusion models with free boundaries. (English) Zbl 07506069 Bull. Math. Sci. 12, No. 1, Article ID 2230001, 56 p. (2022). MSC: 35R35 35K20 35K57 35K58 92D25 92D30 PDF BibTeX XML Cite \textit{Y. Du}, Bull. Math. Sci. 12, No. 1, Article ID 2230001, 56 p. (2022; Zbl 07506069) Full Text: DOI OpenURL
Cheskidov, Alexey; Olson, Eric; Smith, Beau The computation of wandering points on the global attractor by means of symmetry-breaking perturbations. (English) Zbl 07503121 Pure Appl. Funct. Anal. 7, No. 1, 145-173 (2022). MSC: 35B41 35C07 35K35 35K58 PDF BibTeX XML Cite \textit{A. Cheskidov} et al., Pure Appl. Funct. Anal. 7, No. 1, 145--173 (2022; Zbl 07503121) Full Text: Link OpenURL
Kagawa, Keiichiro; Ôtani, Mitsuharu Asymptotic limits of viscous Cahn-Hilliard equation with homogeneous Dirichlet boundary condition. (English) Zbl 07496950 J. Math. Anal. Appl. 512, No. 1, Article ID 126106, 23 p. (2022). MSC: 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{K. Kagawa} and \textit{M. Ôtani}, J. Math. Anal. Appl. 512, No. 1, Article ID 126106, 23 p. (2022; Zbl 07496950) Full Text: DOI OpenURL
Sverak, Vladimir On singularities in the quaternionic Burgers equation. (English. French summary) Zbl 1485.35005 Ann. Math. Qué. 46, No. 1, 41-54 (2022). MSC: 35A20 20G20 35K45 35K58 PDF BibTeX XML Cite \textit{V. Sverak}, Ann. Math. Qué. 46, No. 1, 41--54 (2022; Zbl 1485.35005) Full Text: DOI OpenURL
Peralta, Gilbert Weak and very weak solutions to the viscous Cahn-Hilliard-Oberbeck-Boussinesq phase-field system on two-dimensional bounded domains. (English) Zbl 07490274 J. Evol. Equ. 22, No. 1, Paper No. 12, 71 p. (2022). MSC: 35Q35 35K58 76D03 76T06 35D30 35B65 PDF BibTeX XML Cite \textit{G. Peralta}, J. Evol. Equ. 22, No. 1, Paper No. 12, 71 p. (2022; Zbl 07490274) Full Text: DOI OpenURL
Luo, Yongming On the local in time well-posedness of an elliptic-parabolic ferroelectric phase-field model. (English) Zbl 07488945 Nonlinear Anal., Real World Appl. 65, Article ID 103462, 30 p. (2022). MSC: 35Qxx 35K61 35B65 35J47 PDF BibTeX XML Cite \textit{Y. Luo}, Nonlinear Anal., Real World Appl. 65, Article ID 103462, 30 p. (2022; Zbl 07488945) Full Text: DOI arXiv OpenURL
Chen, Pengyu; Zhang, Xuping; Zhang, Zhitao Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. (English) Zbl 1484.35049 Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1611-1627 (2022). MSC: 35B40 35B10 35K35 35K58 PDF BibTeX XML Cite \textit{P. Chen} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 3, 1611--1627 (2022; Zbl 1484.35049) Full Text: DOI arXiv OpenURL
Ćwiszewski, Aleksander; Gabor, Grzegorz; Kryszewski, Wojciech Invariance and strict invariance for nonlinear evolution problems with applications. (English) Zbl 07482277 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112756, 32 p. (2022). MSC: 37L05 47H06 47J35 35K91 PDF BibTeX XML Cite \textit{A. Ćwiszewski} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 218, Article ID 112756, 32 p. (2022; Zbl 07482277) Full Text: DOI arXiv OpenURL
Feng, Yuanyuan; Mazzucato, Anna L. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection. (English) Zbl 1484.35255 Commun. Partial Differ. Equations 47, No. 2, 279-306 (2022). MSC: 35K35 35K58 76E06 76F25 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{A. L. Mazzucato}, Commun. Partial Differ. Equations 47, No. 2, 279--306 (2022; Zbl 1484.35255) Full Text: DOI arXiv OpenURL
Yang, Huaijun Superconvergence analysis of Galerkin method for semilinear parabolic integro-differential equation. (English) Zbl 07479007 Appl. Math. Lett. 128, Article ID 107872, 8 p. (2022). MSC: 65Mxx 76-XX PDF BibTeX XML Cite \textit{H. Yang}, Appl. Math. Lett. 128, Article ID 107872, 8 p. (2022; Zbl 07479007) Full Text: DOI OpenURL
Castillo, Ricardo; Guzmán-Rea, Omar; Loayza, Miguel On the local existence for Hardy parabolic equations with singular initial data. (English) Zbl 07474365 J. Math. Anal. Appl. 510, No. 2, Article ID 126022, 29 p. (2022). Reviewer: Fatma Gamze Duzgun (Ankara) MSC: 35K67 35K20 35K58 PDF BibTeX XML Cite \textit{R. Castillo} et al., J. Math. Anal. Appl. 510, No. 2, Article ID 126022, 29 p. (2022; Zbl 07474365) Full Text: DOI OpenURL
Duan, Ning; Zhao, Xiaopeng Global dynamics of solutions for a sixth-order parabolic equation describing continuum evolution of film-free surface. (English) Zbl 1483.35042 Nonlinear Anal., Model. Control 27, No. 1, 19-37 (2022). MSC: 35B41 35K35 35K58 76A20 PDF BibTeX XML Cite \textit{N. Duan} and \textit{X. Zhao}, Nonlinear Anal., Model. Control 27, No. 1, 19--37 (2022; Zbl 1483.35042) Full Text: DOI OpenURL
Feng, Yuanyuan; Shi, Binbin; Wang, Weike Dissipation enhancement of planar helical flows and applications to three-dimensional Kuramoto-Sivashinsky and Keller-Segel equations. (English) Zbl 1483.35107 J. Differ. Equations 313, 420-449 (2022). MSC: 35K35 35K58 76E06 76F25 92C17 PDF BibTeX XML Cite \textit{Y. Feng} et al., J. Differ. Equations 313, 420--449 (2022; Zbl 1483.35107) Full Text: DOI arXiv OpenURL
Chi, Tran Thi Quynh; Thuy, Le Thi; Tu, Nguyen Xuan Existence and asymptotic behavior of solutions to a class of semilinear degenerate parabolic equations with nonlinearities of arbitrary order. (English) Zbl 1483.35041 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 77-89 (2022). MSC: 35B41 35D30 35K20 35K58 35K65 PDF BibTeX XML Cite \textit{T. T. Q. Chi} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 29, No. 1, 77--89 (2022; Zbl 1483.35041) Full Text: Link OpenURL
Jaquette, Jonathan; Lessard, Jean-Philippe; Takayasu, Akitoshi Singularities and heteroclinic connections in complex-valued evolutionary equations with a quadratic nonlinearity. (English) Zbl 1483.35119 Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106188, 14 p. (2022). MSC: 35K58 35K20 35B44 37C29 PDF BibTeX XML Cite \textit{J. Jaquette} et al., Commun. Nonlinear Sci. Numer. Simul. 107, Article ID 106188, 14 p. (2022; Zbl 1483.35119) Full Text: DOI arXiv OpenURL
Wang, Lijuan; Zhang, Can A uniform bound on costs of controlling semilinear heat equations on a sequence of increasing domains and its application. (English) Zbl 07466629 ESAIM, Control Optim. Calc. Var. 28, Paper No. 8, 31 p. (2022). MSC: 35K20 35K58 93B07 93C20 PDF BibTeX XML Cite \textit{L. Wang} and \textit{C. Zhang}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 8, 31 p. (2022; Zbl 07466629) Full Text: DOI arXiv OpenURL
Ouzahra, Mohamed Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. (English) Zbl 1481.35256 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 1075-1090 (2022). MSC: 35K57 35K20 35K58 47D06 93B05 93C20 PDF BibTeX XML Cite \textit{M. Ouzahra}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 1075--1090 (2022; Zbl 1481.35256) Full Text: DOI arXiv OpenURL
Lam, Kei Fong Global and exponential attractors for a Cahn-Hilliard equation with logarithmic potentials and mass source. (English) Zbl 1481.35076 J. Differ. Equations 312, 237-275 (2022). MSC: 35B41 35B45 35B65 35K35 35K58 PDF BibTeX XML Cite \textit{K. F. Lam}, J. Differ. Equations 312, 237--275 (2022; Zbl 1481.35076) Full Text: DOI OpenURL
Gross, Leonard The Yang-Mills heat equation with finite action in three dimensions. (English) Zbl 1482.35001 Memoirs of the American Mathematical Society 1349. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5053-3/pbk; 978-1-4704-7015-9/ebook). v, 111 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35-02 35K58 35K65 70S15 35K51 58J35 81T13 PDF BibTeX XML Cite \textit{L. Gross}, The Yang-Mills heat equation with finite action in three dimensions. Providence, RI: American Mathematical Society (AMS) (2022; Zbl 1482.35001) Full Text: DOI arXiv OpenURL
Kostianko, Anna; Li, Xinhua; Sun, Chunyou; Zelik, Sergey Inertial manifolds via spatial averaging revisited. (English) Zbl 1481.35079 SIAM J. Math. Anal. 54, No. 1, 268-305 (2022). MSC: 35B42 35B33 35B40 35K58 35K90 35Q30 76F20 PDF BibTeX XML Cite \textit{A. Kostianko} et al., SIAM J. Math. Anal. 54, No. 1, 268--305 (2022; Zbl 1481.35079) Full Text: DOI arXiv OpenURL
Brasco, Lorenzo; Volzone, Bruno Long-time behavior for the porous medium equation with small initial energy. (English) Zbl 1480.35029 Adv. Math. 394, Article ID 108029, 57 p. (2022). MSC: 35B40 35K55 35K65 35J61 PDF BibTeX XML Cite \textit{L. Brasco} and \textit{B. Volzone}, Adv. Math. 394, Article ID 108029, 57 p. (2022; Zbl 1480.35029) Full Text: DOI arXiv OpenURL
Xu, Guangyu; Mu, Chunlai; Li, Yafeng Global existence and non-existence analyses for a semilinear edge degenerate parabolic equation with singular potential term. (English) Zbl 1480.35287 J. Differ. Equations 309, 508-557 (2022). MSC: 35K65 35A01 35A15 35B40 35B44 35K20 35K58 PDF BibTeX XML Cite \textit{G. Xu} et al., J. Differ. Equations 309, 508--557 (2022; Zbl 1480.35287) Full Text: DOI OpenURL
Garcke, Harald; Knopf, Patrik; Yayla, Sema Long-time dynamics of the Cahn-Hilliard equation with kinetic rate dependent dynamic boundary conditions. (English) Zbl 1479.35094 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112619, 44 p. (2022). MSC: 35B40 35B41 35K35 35K61 35K58 35Q92 37L30 PDF BibTeX XML Cite \textit{H. Garcke} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 215, Article ID 112619, 44 p. (2022; Zbl 1479.35094) Full Text: DOI arXiv OpenURL
Ruzhansky, Michael; Yessirkegenov, Nurgissa Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups. (English) Zbl 1479.35148 J. Differ. Equations 308, 455-473 (2022). MSC: 35B44 35K58 35R01 35R45 58J35 PDF BibTeX XML Cite \textit{M. Ruzhansky} and \textit{N. Yessirkegenov}, J. Differ. Equations 308, 455--473 (2022; Zbl 1479.35148) Full Text: DOI arXiv OpenURL
Starovoĭtov, Victor N. Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential. (Russian. English summary) Zbl 07543528 Sib. Èlektron. Mat. Izv. 18, No. 2, 1714-1719 (2021). MSC: 35K58 35K20 35Q92 35R09 PDF BibTeX XML Cite \textit{V. N. Starovoĭtov}, Sib. Èlektron. Mat. Izv. 18, No. 2, 1714--1719 (2021; Zbl 07543528) Full Text: DOI OpenURL
Ju, Lili; Li, Xiao; Qiao, Zhonghua; Yang, Jiang Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. (English) Zbl 07512335 J. Comput. Phys. 439, Article ID 110405, 18 p. (2021). MSC: 65Mxx 35Kxx 35Qxx PDF BibTeX XML Cite \textit{L. Ju} et al., J. Comput. Phys. 439, Article ID 110405, 18 p. (2021; Zbl 07512335) Full Text: DOI OpenURL
Polyntseva, Svetlana V.; Spirina, Kira I. The problem of determining of the source function and of the leading coefficient in the many-dimensional semilinear parabolic equation. (English) Zbl 07510973 J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 497-506 (2021). MSC: 35Rxx 35Kxx 65Mxx PDF BibTeX XML Cite \textit{S. V. Polyntseva} and \textit{K. I. Spirina}, J. Sib. Fed. Univ., Math. Phys. 14, No. 4, 497--506 (2021; Zbl 07510973) Full Text: DOI MNR OpenURL
Djerad, Abdelkader; Memou, Ameur; Hameida, Ali Well posedness of a nonlinear mixed problem for a parabolic equation with integral condition. (English) Zbl 07509914 Bound. Value Probl. 2021, Paper No. 70, 24 p. (2021). MSC: 35D35 35B45 35K20 35K58 PDF BibTeX XML Cite \textit{A. Djerad} et al., Bound. Value Probl. 2021, Paper No. 70, 24 p. (2021; Zbl 07509914) Full Text: DOI OpenURL
Xiao, Liming; Li, Mingkun Initial boundary value problem for a class of higher-order \(n\)-dimensional nonlinear pseudo-parabolic equations. (English) Zbl 07509849 Bound. Value Probl. 2021, Paper No. 5, 24 p. (2021). MSC: 35K70 35B45 35D30 35D35 35K35 35K58 PDF BibTeX XML Cite \textit{L. Xiao} and \textit{M. Li}, Bound. Value Probl. 2021, Paper No. 5, 24 p. (2021; Zbl 07509849) Full Text: DOI OpenURL
Jenaliyev, M. T.; Assetov, A. A.; Yergaliyev, M. G. On the solvability of the Burgers equation with dynamic boundary conditions in a degenerating domain. (English) Zbl 07503348 Lobachevskii J. Math. 42, No. 15, 3661-3674 (2021). MSC: 35K20 35B45 35K58 PDF BibTeX XML Cite \textit{M. T. Jenaliyev} et al., Lobachevskii J. Math. 42, No. 15, 3661--3674 (2021; Zbl 07503348) Full Text: DOI OpenURL
Taramova, Khedi Sumanovna On the global solvability of the Cahn-Hilliard equation. (Russian. English summary) Zbl 07499739 Chebyshevskiĭ Sb. 22, No. 3(79), 467-473 (2021). MSC: 35K70 35K30 35K58 PDF BibTeX XML Cite \textit{K. S. Taramova}, Chebyshevskiĭ Sb. 22, No. 3(79), 467--473 (2021; Zbl 07499739) Full Text: DOI MNR OpenURL
Wang, Weike; He, Wuque; Shi, Binbin Suppression of blow up by mixing mechanism in semilinear heat equations. (Chinese. English summary) Zbl 07494976 Sci. Sin., Math. 51, No. 6, 1013-1036 (2021). MSC: 35K05 35K58 35A09 35B50 PDF BibTeX XML Cite \textit{W. Wang} et al., Sci. Sin., Math. 51, No. 6, 1013--1036 (2021; Zbl 07494976) Full Text: DOI OpenURL
Patel, Hardik S.; Patel, Trushit Applications of fractional reduced differential transform method for solving the generalized fractional-order FitzHugh-Nagumo equation. (English) Zbl 07489967 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 188, 15 p. (2021). MSC: 35R11 35A22 35K58 PDF BibTeX XML Cite \textit{H. S. Patel} and \textit{T. Patel}, Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 188, 15 p. (2021; Zbl 07489967) Full Text: DOI OpenURL
Fasihi-Ramandi, Ghodratallah; Azami, Shahroud Harnack estimate for positive solutions to a nonlinear equation under geometric flow. (English) Zbl 1485.35083 Kyungpook Math. J. 61, No. 3, 631-644 (2021). MSC: 35B45 35A23 35K58 58J35 PDF BibTeX XML Cite \textit{G. Fasihi-Ramandi} and \textit{S. Azami}, Kyungpook Math. J. 61, No. 3, 631--644 (2021; Zbl 1485.35083) Full Text: DOI arXiv OpenURL
Nakamura, Makoto; Sato, Yuya Existence and non-existence of global solutions for the semilinear complex Ginzburg-Landau type equation in homogeneous and isotropic spacetime. (English) Zbl 07474135 Kyushu J. Math. 75, No. 2, 169-209 (2021). MSC: 35Q56 35Q75 35K58 35G20 83F05 35A01 35B40 PDF BibTeX XML Cite \textit{M. Nakamura} and \textit{Y. Sato}, Kyushu J. Math. 75, No. 2, 169--209 (2021; Zbl 07474135) Full Text: DOI OpenURL
Li, Haixia Finite time blow-up for the heat flow of \(H\)-surface with constant mean curvature. (English) Zbl 1483.35048 Ann. Pol. Math. 127, No. 3, 233-239 (2021). MSC: 35B44 35K20 35K58 35K93 53E10 58J35 PDF BibTeX XML Cite \textit{H. Li}, Ann. Pol. Math. 127, No. 3, 233--239 (2021; Zbl 1483.35048) Full Text: DOI arXiv OpenURL
Davydov, A. A.; Melnik, D. A. Optimal states of distributed exploited populations with periodic impulse harvesting. (English. Russian original) Zbl 1482.35265 Proc. Steklov Inst. Math. 315, Suppl. 1, S81-S88 (2021); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 2, 99-107 (2021). MSC: 35R12 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{A. A. Davydov} and \textit{D. A. Melnik}, Proc. Steklov Inst. Math. 315, S81--S88 (2021; Zbl 1482.35265); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 2, 99--107 (2021) Full Text: DOI OpenURL
Ali, Amir; Gul, Zamin; Khan, Wajahat Ali; Ahmad, Saeed; Zeb, Salman Investigation of fractional order sine-Gordon equation using Laplace Adomian decomposition method. (English) Zbl 1482.35240 Fractals 29, No. 5, Article ID 2150121, 10 p. (2021). MSC: 35R11 35A22 35K58 PDF BibTeX XML Cite \textit{A. Ali} et al., Fractals 29, No. 5, Article ID 2150121, 10 p. (2021; Zbl 1482.35240) Full Text: DOI OpenURL
Wang, Kang-Le A novel approach for fractal Burgers-BBM equation and its variational principle. (English) Zbl 1482.35010 Fractals 29, No. 3, Article ID 2150059, 8 p. (2021). MSC: 35A15 35A22 35K58 35R11 PDF BibTeX XML Cite \textit{K.-L. Wang}, Fractals 29, No. 3, Article ID 2150059, 8 p. (2021; Zbl 1482.35010) Full Text: DOI OpenURL
Colli, Pierluigi; Gilardi, Gianni; Marinoschi, Gabriela Solvability and sliding mode control for the viscous Cahn-Hilliard system with a possibly singular potential. (English) Zbl 1481.35249 Math. Control Relat. Fields 11, No. 4, 905-934 (2021). MSC: 35K35 35K58 58J35 80A22 93B52 93C20 PDF BibTeX XML Cite \textit{P. Colli} et al., Math. Control Relat. Fields 11, No. 4, 905--934 (2021; Zbl 1481.35249) Full Text: DOI arXiv OpenURL
Izydorczyk, Lucas; Oudjane, Nadia; Russo, Francesco A fully backward representation of semilinear PDEs applied to the control of thermostatic loads in power systems. (English) Zbl 1480.60181 Monte Carlo Methods Appl. 27, No. 4, 347-371 (2021). MSC: 60H15 60H30 35K58 49L25 60J60 65C05 PDF BibTeX XML Cite \textit{L. Izydorczyk} et al., Monte Carlo Methods Appl. 27, No. 4, 347--371 (2021; Zbl 1480.60181) Full Text: DOI arXiv OpenURL
Hieu, Le Van Pullback attractors for a class of non-autonomous semilinear parabolic equations with infinite delay. (English) Zbl 1481.35075 Acta Math. Univ. Comen., New Ser. 90, No. 3, 289-308 (2021). MSC: 35B41 35R10 35B40 35B45 35D30 35K58 PDF BibTeX XML Cite \textit{L. Van Hieu}, Acta Math. Univ. Comen., New Ser. 90, No. 3, 289--308 (2021; Zbl 1481.35075) Full Text: Link OpenURL
Abdelhedi, Bouthaina; Zaag, Hatem Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 1479.35136 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607-2623 (2021). MSC: 35B44 35K15 35K58 35R09 PDF BibTeX XML Cite \textit{B. Abdelhedi} and \textit{H. Zaag}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607--2623 (2021; Zbl 1479.35136) Full Text: DOI arXiv OpenURL
Tuan, Nguyen Huy Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation. (English) Zbl 1480.35397 Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4551-4574 (2021). MSC: 35R11 35B65 26A33 35K35 35K58 PDF BibTeX XML Cite \textit{N. H. Tuan}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 12, 4551--4574 (2021; Zbl 1480.35397) Full Text: DOI OpenURL
Sakhno, L. M.; Vasylyk, O. I. Investigation of solutions to higher-order dispersive equations with \(\varphi\)-sub-Gaussian initial conditions. (English) Zbl 07450275 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 78-84 (2021). MSC: 60G12 35K58 35R60 PDF BibTeX XML Cite \textit{L. M. Sakhno} and \textit{O. I. Vasylyk}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 2, 78--84 (2021; Zbl 07450275) Full Text: DOI OpenURL
Kong, Cuixian; Wu, Hui A differential Harnack inequality of solutions to a class of semilinear parabolic equation. (Chinese. English summary) Zbl 07448561 J. Qufu Norm. Univ., Nat. Sci. 47, No. 3, 13-17 (2021). MSC: 35K58 26D20 PDF BibTeX XML Cite \textit{C. Kong} and \textit{H. Wu}, J. Qufu Norm. Univ., Nat. Sci. 47, No. 3, 13--17 (2021; Zbl 07448561) Full Text: DOI OpenURL
Xie, Chunlei; Du, Runmei Approximate controllability of a class of semilinear degenerate parabolic equations with boundary control functions. (Chinese. English summary) Zbl 07448441 J. Jilin Univ., Sci. 59, No. 3, 563-567 (2021). MSC: 93B05 35K58 35K65 93C20 93C10 PDF BibTeX XML Cite \textit{C. Xie} and \textit{R. Du}, J. Jilin Univ., Sci. 59, No. 3, 563--567 (2021; Zbl 07448441) Full Text: DOI OpenURL
Thanh, Bui Le Trong; Trong, Nguyen Ngoc; Do, Tan Duc Blow-up estimates for a higher-order reaction-diffusion equation with a special diffusion process. (English) Zbl 1479.35151 J. Elliptic Parabol. Equ. 7, No. 2, 891-904 (2021). MSC: 35B44 35D30 35K35 35K57 35K58 PDF BibTeX XML Cite \textit{B. Le T. Thanh} et al., J. Elliptic Parabol. Equ. 7, No. 2, 891--904 (2021; Zbl 1479.35151) Full Text: DOI OpenURL
Starovoitov, Victor N. Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral. (English) Zbl 1479.35906 J. Elliptic Parabol. Equ. 7, No. 2, 623-634 (2021). MSC: 35R09 35D30 35K20 35K58 35Q92 PDF BibTeX XML Cite \textit{V. N. Starovoitov}, J. Elliptic Parabol. Equ. 7, No. 2, 623--634 (2021; Zbl 1479.35906) Full Text: DOI arXiv OpenURL
Guillin, Arnaud; Monmarché, Pierre Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes. (English) Zbl 07445218 J. Stat. Phys. 185, No. 2, Paper No. 15, 20 p. (2021). MSC: 82B40 60J60 35K58 35Q83 35Q84 PDF BibTeX XML Cite \textit{A. Guillin} and \textit{P. Monmarché}, J. Stat. Phys. 185, No. 2, Paper No. 15, 20 p. (2021; Zbl 07445218) Full Text: DOI arXiv OpenURL
Ambrose, David M.; Hadadifard, Fazel; Wright, J. Douglas Well-posedness and asymptotics of a coordinate-free model of flame fronts. (English) Zbl 1479.35086 SIAM J. Appl. Dyn. Syst. 20, No. 4, 2261-2294 (2021). MSC: 35B40 35B65 35K30 35K58 PDF BibTeX XML Cite \textit{D. M. Ambrose} et al., SIAM J. Appl. Dyn. Syst. 20, No. 4, 2261--2294 (2021; Zbl 1479.35086) Full Text: DOI arXiv OpenURL
Sobajima, Motohiro; Wakasugi, Yuta Supersolutions for parabolic equations with unbounded or degenerate diffusion coefficients and their applications to some classes of parabolic and hyperbolic equations. (English) Zbl 1479.35515 J. Math. Soc. Japan 73, No. 4, 1091-1128 (2021). MSC: 35K20 35K58 35B40 35L20 PDF BibTeX XML Cite \textit{M. Sobajima} and \textit{Y. Wakasugi}, J. Math. Soc. Japan 73, No. 4, 1091--1128 (2021; Zbl 1479.35515) Full Text: DOI arXiv Link OpenURL
Ibdah, Hussain Strong solutions to a modified Michelson-Sivashinsky equation. (English) Zbl 1479.35225 Commun. Math. Sci. 19, No. 4, 1071-1100 (2021). MSC: 35D35 35B50 35B65 35K15 35K58 35R11 PDF BibTeX XML Cite \textit{H. Ibdah}, Commun. Math. Sci. 19, No. 4, 1071--1100 (2021; Zbl 1479.35225) Full Text: DOI arXiv OpenURL
Sourdis, Christos A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. (English) Zbl 1478.35061 Electron Res. Arch. 29, No. 5, 2829-2839 (2021). MSC: 35B53 35B08 35B40 35B50 35J61 35K58 PDF BibTeX XML Cite \textit{C. Sourdis}, Electron Res. Arch. 29, No. 5, 2829--2839 (2021; Zbl 1478.35061) Full Text: DOI arXiv OpenURL
Duong, Anh Tuan; Nguyen, Van Hoang; Nguyen, Thi Quynh Uniform lower bound and Liouville type theorem for fractional Lichnerowicz equations. (English) Zbl 1479.35918 Bull. Aust. Math. Soc. 104, No. 3, 484-492 (2021). MSC: 35R11 35B53 35B35 35J61 PDF BibTeX XML Cite \textit{A. T. Duong} et al., Bull. Aust. Math. Soc. 104, No. 3, 484--492 (2021; Zbl 1479.35918) Full Text: DOI OpenURL
Duong, G. K.; Kavallaris, N. I.; Zaag, H. Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer-Meinhardt system. (English) Zbl 1477.35043 Math. Models Methods Appl. Sci. 31, No. 7, 1469-1503 (2021). MSC: 35B44 35B40 35K20 35K58 35R09 PDF BibTeX XML Cite \textit{G. K. Duong} et al., Math. Models Methods Appl. Sci. 31, No. 7, 1469--1503 (2021; Zbl 1477.35043) Full Text: DOI arXiv OpenURL
Barbu, Viorel; Röckner, Michael Stochastic semilinear parabolic equations with measures as initial data. (English) Zbl 1479.60120 Pure Appl. Funct. Anal. 6, No. 2, 247-255 (2021). Reviewer: Martin Ondreját (Praha) MSC: 60H15 47H05 47J05 35R60 35K58 35D30 PDF BibTeX XML Cite \textit{V. Barbu} and \textit{M. Röckner}, Pure Appl. Funct. Anal. 6, No. 2, 247--255 (2021; Zbl 1479.60120) Full Text: Link OpenURL
Chen, Wenxiong; Wu, Leyun; Wang, Pengyan Nonexistence of solutions for indefinite fractional parabolic equations. (English) Zbl 1476.35073 Adv. Math. 392, Article ID 108018, 26 p. (2021). MSC: 35B53 35R11 30C80 35K15 35K58 PDF BibTeX XML Cite \textit{W. Chen} et al., Adv. Math. 392, Article ID 108018, 26 p. (2021; Zbl 1476.35073) Full Text: DOI arXiv OpenURL
Bhimani, Divyang G.; Manna, Ramesh; Nicola, Fabio; Thangavelu, Sundaram; Trapasso, S. Ivan Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness. (English) Zbl 1476.35297 Adv. Math. 392, Article ID 107995, 18 p. (2021). MSC: 35R11 35K15 35K58 35S05 42B35 47D06 PDF BibTeX XML Cite \textit{D. G. Bhimani} et al., Adv. Math. 392, Article ID 107995, 18 p. (2021; Zbl 1476.35297) Full Text: DOI arXiv OpenURL
Nowakowski, Andrzej Optimal blowup time of diffusion equations with control. (English) Zbl 1482.93273 Int. J. Control 94, No. 5, 1368-1375 (2021). Reviewer: Nicolae Cîndea (Aubière) MSC: 93C20 35K58 49J20 90C39 PDF BibTeX XML Cite \textit{A. Nowakowski}, Int. J. Control 94, No. 5, 1368--1375 (2021; Zbl 1482.93273) Full Text: DOI OpenURL
Yang, Zhipeng Fujita exponent and nonexistence result for the Rockland heat equation. (English) Zbl 1475.35035 Appl. Math. Lett. 121, Article ID 107386, 6 p. (2021). MSC: 35B33 35K15 35K58 35R03 PDF BibTeX XML Cite \textit{Z. Yang}, Appl. Math. Lett. 121, Article ID 107386, 6 p. (2021; Zbl 1475.35035) Full Text: DOI OpenURL
Zhang, Huiyang; Xia, Yonghui; N’gbo, Paul-Rene Global existence and uniqueness of a periodic wave solution of the generalized Burgers-Fisher equation. (English) Zbl 1475.35103 Appl. Math. Lett. 121, Article ID 107353, 7 p. (2021). MSC: 35C07 35K58 PDF BibTeX XML Cite \textit{H. Zhang} et al., Appl. Math. Lett. 121, Article ID 107353, 7 p. (2021; Zbl 1475.35103) Full Text: DOI OpenURL
Wu, Yuqiu; Yin, Jingxue; Wang, Liangwei; Tu, Zhengwen Complicated asymptotic behavior of solutions for the fourth-order parabolic equation with absorption. (English) Zbl 1475.35066 Appl. Math. Lett. 120, Article ID 107278, 7 p. (2021). MSC: 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{Y. Wu} et al., Appl. Math. Lett. 120, Article ID 107278, 7 p. (2021; Zbl 1475.35066) Full Text: DOI OpenURL
Li, Lu; Miranville, Alain; Guillevin, Rémy Cahn-Hilliard models for glial cells. (English) Zbl 1475.35176 Appl. Math. Optim. 84, No. 2, 1821-1842 (2021). MSC: 35K35 35K58 35B45 35Q92 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Math. Optim. 84, No. 2, 1821--1842 (2021; Zbl 1475.35176) Full Text: DOI OpenURL
Hernández-Santamaría, Víctor; Le Balc’h, Kévin Local null-controllability of a nonlocal semilinear heat equation. (English) Zbl 1475.35184 Appl. Math. Optim. 84, No. 2, 1435-1483 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35K58 93B05 93B07 93C20 35K20 PDF BibTeX XML Cite \textit{V. Hernández-Santamaría} and \textit{K. Le Balc'h}, Appl. Math. Optim. 84, No. 2, 1435--1483 (2021; Zbl 1475.35184) Full Text: DOI arXiv OpenURL
Miyake, Nobuhito; Okabe, Shinya Asymptotic behavior of solutions for a fourth order parabolic equation with gradient nonlinearity via the Galerkin method. (English) Zbl 1473.35051 Ferone, Vincenzo (ed.) et al., Geometric properties for parabolic and elliptic PDE’s. Contributions of the 6th Italian-Japanese workshop, Cortona, Italy, May 20–24, 2019. Cham: Springer. Springer INdAM Ser. 47, 247-271 (2021). MSC: 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{N. Miyake} and \textit{S. Okabe}, Springer INdAM Ser. 47, 247--271 (2021; Zbl 1473.35051) Full Text: DOI OpenURL
Fujishima, Yohei; Ioku, Norisuke Solvability of a semilinear heat equation via a quasi scale invariance. (English) Zbl 1473.35341 Ferone, Vincenzo (ed.) et al., Geometric properties for parabolic and elliptic PDE’s. Contributions of the 6th Italian-Japanese workshop, Cortona, Italy, May 20–24, 2019. Cham: Springer. Springer INdAM Ser. 47, 79-101 (2021). MSC: 35K58 35K15 PDF BibTeX XML Cite \textit{Y. Fujishima} and \textit{N. Ioku}, Springer INdAM Ser. 47, 79--101 (2021; Zbl 1473.35341) Full Text: DOI OpenURL
Mou, Jinbao; Xiong, Hui Blow-up solution and its upper and lower bound of a parabolic equation with boundary heat source. (Chinese. English summary) Zbl 07404428 Math. Pract. Theory 51, No. 7, 187-194 (2021). MSC: 35B44 35K58 PDF BibTeX XML Cite \textit{J. Mou} and \textit{H. Xiong}, Math. Pract. Theory 51, No. 7, 187--194 (2021; Zbl 07404428) OpenURL
Abolarinwa, Abimbola Differential Harnack estimates for a nonlinear evolution equation of Allen-Cahn type. (English) Zbl 1473.35074 Mediterr. J. Math. 18, No. 5, Paper No. 200, 15 p. (2021). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B50 58J60 58J35 60J60 35K58 PDF BibTeX XML Cite \textit{A. Abolarinwa}, Mediterr. J. Math. 18, No. 5, Paper No. 200, 15 p. (2021; Zbl 1473.35074) Full Text: DOI OpenURL
Vo, Hoang-Hung; Le Minh, Triet; Hong, Phong Luu; Van, Canh Vo An inverse problem for a time-fractional advection equation associated with a nonlinear reaction term. (English) Zbl 1472.35460 Inverse Probl. Sci. Eng. 29, No. 8, 1178-1198 (2021). MSC: 35R30 35R11 35K58 65M32 PDF BibTeX XML Cite \textit{H.-H. Vo} et al., Inverse Probl. Sci. Eng. 29, No. 8, 1178--1198 (2021; Zbl 1472.35460) Full Text: DOI OpenURL
Vaneeva, Olena O.; Popovych, Roman O.; Sophocleous, Christodoulos Extended symmetry analysis of two-dimensional degenerate Burgers equation. (English) Zbl 1473.35019 J. Geom. Phys. 169, Article ID 104336, 21 p. (2021). MSC: 35B06 35C05 35K58 PDF BibTeX XML Cite \textit{O. O. Vaneeva} et al., J. Geom. Phys. 169, Article ID 104336, 21 p. (2021; Zbl 1473.35019) Full Text: DOI arXiv OpenURL