×

On a wavelet-based method for the numerical simulation of wave propagation. (English) Zbl 1015.65045

Summary: A wavelet-based method for the numerical simulation of acoustic and elastic wave propagation is developed. Using a displacement-velocity formulation and treating spatial derivatives with linear operators, the wave equations are rewritten as a system of equations whose evolution in time is controlled by first-order derivatives. The linear operators for spatial derivatives are implemented in wavelet bases using an operator projection technique with nonstandard forms of wavelet transform.
Using a semigroup approach, the discretized solution in time can be represented in an explicit recursive form, based on Taylor expansion of exponential functions of operator matrices. The boundary conditions are implemented by augmenting the system of equations with equivalent force terms at the boundaries.
The wavelet-based method is applied to the acoustic wave equation with rigid boundary conditions at both ends in 1-D domain and to the elastic wave equation with a traction-free boundary conditions at a free surface in 2-D spatial media. The method can be applied directly to media with plane surfaces, and surface topography can be included with the aid of distortion of the grid describing the properties of the medium. The numerical results are compared with analytic solutions based on the Cagniard technique and show high accuracy.
The wavelet-based approach is also demonstrated for complex media including highly varying topography or stochastic heterogeneity with rapid variations in physical parameters. These examples indicate the value of the approach as an accurate and stable tool for the simulation of wave propagation in general complex media.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
35L70 Second-order nonlinear hyperbolic equations
76Q05 Hydro- and aero-acoustics
74J30 Nonlinear waves in solid mechanics
65T60 Numerical methods for wavelets
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aki, K.; Richards, P. G., Quantitative Seismology (1980), Freeman: Freeman San Francisco
[2] Anant, K. S.; Dowla, F. U., Wavelet transform methods for phase identification in three-component seismograms, Bull. Seism. Soc. Am., 87, 1598 (1997)
[3] J. M. Augenbaum, The pseudospectral method for limited-area elastic wave calculations, in, Computational Methods in Geosciences, edited by, W. E. Fitzgibbon and M. F. Wheeler, SIAM, Philadelphia, 1992.; J. M. Augenbaum, The pseudospectral method for limited-area elastic wave calculations, in, Computational Methods in Geosciences, edited by, W. E. Fitzgibbon and M. F. Wheeler, SIAM, Philadelphia, 1992.
[4] Bayliss, A.; Jordan, K. E.; LeMesurier, B. J.; Turkel, E., A fourth-order accurate finite-difference scheme for the computation of elastic waves, Bull. Seism. Soc. Am., 76, 1115 (1986)
[5] Bear, L. K.; Pavlis, G. L.; Bokelmann, G. H.R., multi-wavelet analysis of three-component seismic arrays: Application to measure effective anisotrophy at Piñon Flats, California, Bull. Seism. Soc. Am., 89, 693 (1999)
[6] Belleni-Morante, A., Applied Semigroups and Evolution Equations (1979), Oxford University Press · Zbl 0426.47020
[7] Beylkin, G., On the representation of operators in bases of compactly supported wavelets, SIAM J. Numer. Anal., 6, 1716 (1992) · Zbl 0766.65007
[8] Beylkin, G., Wavelets and fast numerical algorithms, Proceedings of Symposia in Applied Mathematics, 47, 89 (1993) · Zbl 0793.65105
[9] Beylkin, G.; Keiser, J. M., On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases, J. Comput. Phys., 132, 233 (1997) · Zbl 0880.65076
[10] Beylkin, G.; Keiser, J. M.; Vozovoi, L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys., 147, 362 (1998) · Zbl 0924.65089
[11] D. M. Boore, Finite difference methods for seismic wave propagation in heterogeneous materials, in, Methods in Computational Physics, Vol. 11, Seismlogy: Surface Waves and Earth Oscillations, edited by, B. A. Bolt, pp, 1, - 37, Academic Press, New York, 1972.; D. M. Boore, Finite difference methods for seismic wave propagation in heterogeneous materials, in, Methods in Computational Physics, Vol. 11, Seismlogy: Surface Waves and Earth Oscillations, edited by, B. A. Bolt, pp, 1, - 37, Academic Press, New York, 1972.
[12] Bouchon, M., A simple method to calculate Green’s functions for elastic layered media, Bull. Seism. Soc. Am., 71, 959 (1981)
[13] Burridge, R., Some Mathematical Topics in Seismology (1976) · Zbl 0354.73078
[14] Cai, W.; Wang, J., Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs, SIAM J. Numer. Anal., 33, 937 (1996) · Zbl 0856.65115
[15] Carcione, J. M., The wave equation in generalized coordinates, Geophysics, 59, 1911 (1994)
[16] Cerjan, C.; Kosloff, D.; Kosloff, R.; Reshef, M., A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705 (1985)
[17] Clayton, R.; Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am., 67, 1529 (1977)
[18] Dahmen, W., Wavelet and multiscale methods for operator equations, Acta Numerica, 6, 55 (1997) · Zbl 0884.65106
[19] Dai, N.; Vafidis, A.; Kanasewich, E., Composite absorbing boundaries for the numerical simulation of seismic waves, Bull. Seism. Soc. Am., 84, 185 (1994)
[20] Daubechies, I., Ten Lectures on Wavelets (1992) · Zbl 0776.42018
[21] Deslauriers, G.; Dubuc, S., Symmetric iterative interpolation process, Constr. Approx., 5, 49 (1989) · Zbl 0659.65004
[22] Dubuc, S., Interpolation through an iterative scheme, J. Math. Anal. Appl., 114, 185 (1986) · Zbl 0615.65005
[23] Faccioli, E.; Maggio, F.; Quarteroni, A.; Tagliani, A., Spectral-domain decomposition methods for the solution of acoustic and elastic wave equations, Geophysics, 61, 1160 (1996)
[24] Ferziger, J. H., Numerical Methods for Engineering Application, 270 (1981)
[25] Frankel, A., Three-dimensional simulations of ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas Fault, Bull. Seism. Soc. Am., 83, 1020 (1993)
[26] Frankel, A.; Clayton, R. W., Finite difference simulations of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res., 91, 6465 (1986)
[27] Fröhlich, J.; Schneider, K., An adaptive wavelet-vaguelette algorithm for the solution of PDEs, J. Comput. Phys., 130, 174 (1997) · Zbl 0868.65067
[28] Furumura, T.; Kennett, B. L.N.; Furumura, M., Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method, Geophys. J. Int., 135, 845 (1998)
[29] Givoli, D., Non-reflecting boundary conditions, J. Comput. Phys., 94, 1 (1991) · Zbl 0731.65109
[30] Gottlieb, D.; Gunzburger, M.; Turkel, E., On numerical boundary treatment of hyperbolic systems for finite-difference and finite element methods, SIAM J. Numer. Anal., 19, 671 (1982) · Zbl 0481.65072
[31] Graves, R. W., Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seism. Soc. Am., 86, 1091 (1996)
[32] Hoffman, J. D., Numerical Methods for Engineers and Scientists (1992) · Zbl 0823.65006
[33] Holmström, M., Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput., 21, 405 (1999) · Zbl 0959.65109
[34] Hong, T.-K.; Kennett, B. L.N., A wavelet-based method for simulation of 2-D elastic wave propagation, Geophys. J. Int. (2002) · Zbl 1015.65045
[35] T.-K. Hong, and, B. L. N. Kennett, Scattering attenuation of 2-D elastic waves: Theory and numerical modelling using a wavelet-based method (submitted).; T.-K. Hong, and, B. L. N. Kennett, Scattering attenuation of 2-D elastic waves: Theory and numerical modelling using a wavelet-based method (submitted).
[36] Jameson, L., On the spline-based wavelet differentiation matrix, Appl. Numer. Math., 17, 33 (1995) · Zbl 0827.65027
[37] Jih, R.-S.; McLaughlin, K. L.; Der, Z. A., Free-boundary conditions of arbitrary polygonal topography in a two-dimensional explicit elastic finite-difference scheme, Geophysics, 53, 1045 (1988)
[38] Käser, M.; Igel, H., Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators, Geophys. Prospect., 49, 607 (2001)
[39] Kelly, K. R.; Ward, R. W.; Treitel, S.; Alford, R. M., Synthetic seismograms: A finite-difference approach, Geophysics, 41, 2 (1976)
[40] Kennett, B. L.N., Seismic Wave Propagation in Stratified Media, 342 (1983) · Zbl 0544.73034
[41] Kennett, B. L.N., The Seismic Wavefield, Vol. I, Introduction and Theoretical Development, 370 (2001) · Zbl 1048.86009
[42] Kennett, B. L.N.; Engdahl, E. R.; Buland, R., Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 122, 108 (1995)
[43] Komatitsch, D.; Barnes, C.; Tromp, J., Wave propagation near a fluid-solid interface: A spectral-element approach, Geophysics, 66, 623 (2000)
[44] Komatitsch, D.; Coutel, F.; Mora, P., Tensorial formulation of the wave equation for modelling curved interfaces, Geophys. J. Int., 127, 156 (1996)
[45] Komatitsch, D.; Vilotte, J.-P., The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am., 88, 368 (1998) · Zbl 0974.74583
[46] Kosloff, D.; Baysal, E., Forward modeling by a Fourier method, Geophysics, 47, 1402 (1982)
[47] Kosloff, D.; Kessler, D.; Filho, A. Q.; Tessmer, E.; Behle, A.; Strahilevitz, R., Solution of the equations of dynamic elasticity by a Chebychev spectral method, Geophysics, 55, 734 (1990)
[48] Kosloff, R.; Kosloff, D., Absorbing boundaries for wave propagation problems, J. Comput. Phys., 63, 363 (1986) · Zbl 0644.65086
[49] Lay, T.; Wallace, T. C., Modern Global Seismology, 521 (1995)
[50] Levander, A. R., Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425 (1988)
[51] Lewalle, J., Formal improvements in the solution of the wavelet-transformed Poisson and diffusion equations, J. Math. Phys., 39, 4119 (1998) · Zbl 0933.35163
[52] Lilly, J. M.; Park, J., Multiwavelet spectral and polarization analysis of seismic records, Geophys. J. Int., 122, 1001 (1995)
[53] Lippert, R. A.; Arias, T. A.; Edelman, A., Multiscale computation with interpolating wavelets, J. Comput. Phys., 140, 278 (1998) · Zbl 0927.65130
[54] Mahrer, K. D., Numerical time step instability and Stacey’s and Clayton-Engquist’s absorbing boundary conditions, Bull. Seism. Soc. Am., 80, 213 (1990)
[55] P. Moczo, Introduction to Modeling Seismic Wave Propagation by the Finite-Difference Method; P. Moczo, Introduction to Modeling Seismic Wave Propagation by the Finite-Difference Method
[56] Moczo, P.; Bystricky, E.; Kristek, J.; Carcione, J. M.; Bouchon, M., Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures, Bull. Seism. Soc. Am., 87, 1305 (1997)
[57] Moczo, P.; Kristek, J.; Halada, L., 3D Fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion, Bull. Seism. Soc. Am., 90, 587 (2000)
[58] Ohminato, T.; Chouet, B. A., A free-surface boundary condition for including 3D topography in the finite-difference method, Bull. Seism. Soc. Am., 87, 494 (1997)
[59] Pilant, W. L., Elastic Waves in the Earth (1979)
[60] Powers, D. L., Boundary Value Problems (1972) · Zbl 0246.35001
[61] Qian, S.; Weiss, J., Wavelets and the numerical solution of partial differential equations, J. Comput. Phys., 106, 155 (1993) · Zbl 0771.65072
[62] Rosa, J. W.C.; Cardoso, F. A.C. M.; Aki, K.; Malvar, H. S.; Artola, F. A.V.; Rosa, J. W.C., Modelling elastic media with the wavelet transform, Geophys. J. Int., 146, 454 (2001)
[63] Sato, H.; Fehler, M. C., Seismic Wave Propagation and Scattering in the Heterogeneous Earth (1998)
[64] Shapiro, N. M.; Olsen, K. B.; Singh, S. K., Wave-guide effects in subduction zones: Evidence from three-dimensional modeling, Geophys. Res. Lett., 27, 433 (2000)
[65] Shensa, M. J., The discrete wavelet transform: Wedding the À Trous and Mallat algorithms, IEEE Trans. Signal Processing, 40, 2464 (1992) · Zbl 0825.94053
[66] Shin, C., Sponge boundary condition for frequency-domain modeling, Geophysics, 60, 1870 (1995)
[67] Sochacki, J.; Kubichek, R.; George, J.; Fletcher, W. R.; Smithson, S., Absorbing boundary conditions and surface waves, Geophysics, 52, 60 (1987)
[68] Stephen, R. A.; Cardo-Casas, F.; Cheng, C. H., Finite-difference synthetic acoustic logs, Geophysics, 50, 1588 (1987)
[69] Strang, G.; Nguyen, T., Wavelets and Filter Banks (1996) · Zbl 1254.94002
[70] Tessmer, E.; Kosloff, D.; Behle, A., Elastic wave propagation simulation in the presence of surface topography, Geophys. J. Int., 108, 621 (1992)
[71] Tessmer, E.; Kosloff, D., 3-D Elastic modeling with surface topography by a Chebychev spectral method, Geophysics, 59, 464 (1994)
[72] Thompson, K. W., Time-dependent boundary conditions for hyperbolic systems, II, J. Comput. Phys., 89, 439 (1990) · Zbl 0701.76070
[73] Tibuleac, M.; Herrin, E. T., An automatic method for determination of Lg arrival times using wavelet transforms, Seism. Res. Lett., 70, 577 (1999)
[74] Vasilyev, O. V.; Podladchikov, Y. Y.; Yuen, D. A., Modelling of viscoelastic plume-lithosphere interaction using the adaptive multilevel wavelet collocation method, Geophys. J. Int., 147, 579 (2001)
[75] Virieux, J., P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method, Geophysics, 51, 889 (1986)
[76] Yomogida, K.; Etgen, J. T., 3-D wave propagation in the Los Angeles Basin for the Whittier-Narrows earthquake, Bull. Seism. Soc. Am., 83, 1325 (1993)
[77] Zahradnik, J., Simple elastic finite-difference scheme, Bull. Seism. Soc. Am., 85, 1879 (1995)
[78] Zhang, Y.-G.; Ballmann, J., Two techniques for the absorption of elastic waves using an artificial transition layer, Wave Motion, 25, 15 (1997) · Zbl 0955.74521
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.