×

Semi-supervised multi-facies object retrieval in seismic data. (English) Zbl 1441.86012

Summary: Characterizing buried sedimentary structures through the use of seismic data is part of many geoscientific projects. The evolution of seismic acquisition and processing capabilities has made it possible to acquire ever-growing amounts of data, increasing the image resolution so that sedimentary objects (geobodies) can be imaged with greater precision within sedimentary layers. However, exploring and interpreting them in large datasets can be tedious work. Recent practice has shown the potential of automated methods to assist interpreters in this task. In this paper, a new semi-supervised methodology is presented for identifying multi-facies geobodies in three-dimensional seismic data, while preserving their internal facies variability and keeping track of the input uncertainty. The approach couples a nonlinear data-driven method with a novel supervised learning method. It requires a prior delineation of the geobodies on a few seismic images, along with a priori confidence in that delineation. The methodology relies on a learning of an appropriate data representation, and propagates the prior confidence to posterior probabilities attached to the final delineation. The proposed methodology was applied to three-dimensional real data, showing consistently effective retrieval of the targeted multi-facies geobodies mass-transport deposits in the present case.

MSC:

86A32 Geostatistics
86A15 Seismology (including tsunami modeling), earthquakes
68T05 Learning and adaptive systems in artificial intelligence

Software:

GTM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alves, TM; Kurtev, K.; Moore, GF; Strasser, M., Assessing the internal character, reservoir potential, and seal competence of mass-transport deposits using seismic texture: a geophysical and petrophysical approach, AAPG Bull, 98, 4, 793-824 (2014) · doi:10.1306/09121313117
[2] Berthelot, A.; Solberg, AH; Gelius, LJ, Texture attributes for detection of salt, J Appl Geophys, 88, 52-69 (2013) · doi:10.1016/j.jappgeo.2012.09.006
[3] Bishop, CM; Svensén, M.; Williams, CKI, GTM: the generative topographic mapping, Neural Comput, 10, 1, 215-234 (1998) · doi:10.1162/089976698300017953
[4] Chopra S, Marfurt KJ (2014) Seismic facies analysis using generative topographic mapping. In: Birkelo B (ed) SEG technical program expanded abstracts 2014, pp 1390-1394. 10.1190/segam2014-0233.1
[5] Clausi, DA; Zhao, Y., Grey level co-occurrence integrated algorithm (GLCIA): a superior computational method to rapidly determine co-occurrence probability texture features, Comput Geosci, 29, 7, 837-850 (2003) · doi:10.1016/S0098-3004(03)00089-X
[6] de Matos, MC; Osorio, PL; Johann, PR, Unsupervised seismic facies analysis using wavelet transform and self-organizing maps, Geophysics, 72, 1, P9-P21 (2007) · doi:10.1190/1.2392789
[7] de Silva, AM; Leong, PHW; de Silva, AM; Leong, PHW, Feature selection, Grammar-based feature generation for time-series prediction, 13-24 (2015), Singapore: Springer, Singapore
[8] Eichkitz, CG; Davies, J.; Amtmann, J.; Schreilechner, MG; de Groot, P., Grey level co-occurrence matrix and its application to seismic data, First Break, 33, 71-77 (2015)
[9] Gao, D., Application of seismic texture model regression to seismic facies characterization and interpretation, Lead Edge, 27, 3, 394-397 (2008) · doi:10.1190/1.2896632
[10] Haralick, RM; Shanmugam, K.; Dinstein, I., Textural features for image classification, IEEE Trans Syst Man Cybern, 3, 6, 610-621 (1973) · doi:10.1109/TSMC.1973.4309314
[11] Hashemi H, de Beukelaar P, Beiranvand B, Seiedali M (2017) Clustering seismic datasets for optimized facies analysis using a sscsom technique. In: 79th EAGE conference and exhibition 2017, proceedings. EAGE Publications BV, Netherlands. 10.3997/2214-4609.201700916
[12] Kohonen T (1986) Learning vector quantization for pattern recognition: technical report TKK-F- A601. Helsinki University of Technology
[13] Le Bouteiller P, Charléty J (2018) Procédé pour la détection d’objets géologiques dans une image sismique (patent pending)
[14] Long Z, Alaudah Y, Qureshi MA, Farraj MA, Wang Z, Amin A, Deriche M, AlRegib G (2015) Characterization of migrated seismic volumes using texture attributes: a comparative study. In: Schneider RV (ed) SEG technical program expanded abstracts 2015, pp 1744-1748. 10.1190/segam2015-5934664.1
[15] Lu Y, Cohen I, Zhou XS, Tian Q (2007) Feature selection using principal feature analysis. In: Lienhart R, Prasad AR, Hanjalic A, Choi S, Bailey B, Sebe N (eds) The 15th international conference, p 301. 10.1145/1291233.1291297
[16] Marroquín, ID; Brault, JJ; Hart, BS, A visual data-mining methodology for seismic facies analysis: part 1—testing and comparison with other unsupervised clustering methods, Geophysics, 74, 1, P1-P11 (2009) · doi:10.1190/1.3046455
[17] Nivlet, P., Uncertainties in seismic facies analysis for reservoir characterisation or monitoring: causes and consequences, Oil Gas Sci Technol Rev IFP, 62, 2, 225-235 (2007) · doi:10.2516/ogst:2007019
[18] Ogiesoba, O.; Hammes, U., Seismic interpretation of mass-transport deposits within the upper oligocene frio formation, south Texas Gulf Coast, AAPG Bull, 96, 5, 845-868 (2012) · doi:10.1306/09191110205
[19] Pitas, I.; Kotropoulos, C., A texture-based approach to the segmentation of seismic images, Pattern Recognit, 25, 9, 929-945 (1992) · doi:10.1016/0031-3203(92)90059-R
[20] Qi, J.; Lin, T.; Zhao, T.; Li, F.; Marfurt, K., Semisupervised multiattribute seismic facies analysis, Interpretation, 4, 1, SB91-SB106 (2016) · doi:10.1190/INT-2015-0098.1
[21] Roy, A.; Romero-Peláez, AS; Kwiatkowski, TJ; Marfurt, KJ, Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz basin, southern Mexico, Interpretation, 2, 1, SA31-SA47 (2014) · doi:10.1190/INT-2013-0077.1
[22] Shafiq MA, Wang Z, Amin A, Hegazy T, Deriche M, AlRegib G (2015) Detection of salt-dome boundary surfaces in migrated seismic volumes using gradient of textures. In: Schneider RV (ed) SEG technical program expanded abstracts 2015, pp 1811-1815. 10.1190/segam2015-5927230.1
[23] Shipp, RC; Weimer, P.; Posamentier, HW, Mass-transport deposits in deepwater settings (2011), Tusla: SEPM (Society for Sedimentary Geology), Tusla
[24] Soille, P., Morphological image analysis: principles and applications (2010), Berlin: Springer, Berlin
[25] Sokal, RR; Rohlf, FJ, The comparison of dendrograms by objective methods, Taxon, 11, 2, 33 (1962) · doi:10.2307/1217208
[26] Taha, AA; Hanbury, A., Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool, BMC Med Imaging, 15, 29 (2015) · doi:10.1186/s12880-015-0068-x
[27] Wang, Z.; Hegazy, T.; Long, Z.; AlRegib, G., Noise-robust detection and tracking of salt domes in postmigrated volumes using texture, tensors, and subspace learning, Geophysics, 80, 6, WD101-WD116 (2015) · doi:10.1190/geo2015-0116.1
[28] Wang, S.; Yuan, S.; Yan, B.; He, Y.; Sun, W., Directional complex-valued coherence attributes for discontinuous edge detection, J Appl Geophys (2016) · doi:10.1016/j.jappgeo.2016.03.016
[29] Ward, JH, Hierarchical grouping to optimize an objective function, J Am Stat Assoc, 58, 301, 236-244 (1963) · doi:10.1080/01621459.1963.10500845
[30] West, BP; May, SR; Eastwood, JE; Rossen, C., Interactive seismic facies classification using textural attributes and neural networks, Lead Edge, 21, 10, 1042-1049 (2002) · doi:10.1190/1.1518444
[31] Zhao, T.; Zhang, J.; Li, F.; Marfurt, KJ, Characterizing a turbidite system in Canterbury basin, New Zealand, using seismic attributes and distance-preserving self-organizing maps, Interpretation, 4, 1, SB79-SB89 (2016) · doi:10.1190/INT-2015-0094.1
[32] Zhao, T.; Li, F.; Marfurt, KJ, Constraining self-organizing map facies analysis with stratigraphy: an approach to increase the credibility in automatic seismic facies classification, Interpretation, 5, 2, T163-T171 (2017) · doi:10.1190/INT-2016-0132.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.