×

An explicit solution for inelastic buckling of rectangular plates subjected to combined biaxial and shear loads. (English) Zbl 1475.74041

Summary: In this study, the inelastic buckling equation of a thin plate subjected to all in-plane loads is analytically solved and the inelastic buckling coefficient is explicitly estimated. Using the deformation theory of plasticity, a multiaxial nonlinear stress-strain curve is supposed which is described by the Ramberg-Osgood representation and the von Mises criterion. Due to buckling, the variations are applied on the secant modulus, the Poisson’s ratio and the normal and shear strains. Then, the inelastic buckling equation of a perfect thin rectangular plate subjected to combined biaxial and shear loads is completely developed. Applying the generalized integral transform technique, the equation is straightforwardly converted to an eigenvalue problem in a dimensionless form. Initially, a geometrical solution and an algorithm are presented to find the lowest inelastic buckling coefficient (\(k_s\)). The solution is successfully validated by some results in the literature. Then, a semi-analytical solution is proposed to simplify the calculation of \(k_s\). The method of linear least squares is applied in two stages on the obtained results and an approximate polynomial equation is found which is usually solved by trial and error. The obtained results show good agreement between the proposed semi-analytical and geometrical methods, so that the differences are \(<12\)%. The semi-analytical solution is easily programmed in usual scientific calculators and can be applied for practical purposes.

MSC:

74G60 Bifurcation and buckling
74K20 Plates
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics

Software:

Python
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ilyushin, A.A.: The elastic-plastic stability of plates. NACA, Technical Memorandum, No. 1188 (1947)
[2] Stowell, E.Z.: A unified theory of plastic buckling. NACA, Technical Note, No. 1556 (1948)
[3] Bijlaard, PP, Theory and tests on the plastic stability of plates and shells, J. Aeronaut. Sci., 16, 9, 529-541 (1949) · doi:10.2514/8.11851
[4] Handelman, G., Prager, W.: Plastic buckling of a rectangular plate under edge thrusts. NACA, Technical Note, No. 1530 (1948)
[5] Budiansky, B., A reassessment of deformation theories of plasticity, J. Appl. Mech., 26, 2, 259 (1959)
[6] Jones, R.M.: Deformation Theory of Plasticity. Bull Ridge Corporation (2009)
[7] Hutchinson, JW, Plastic buckling, Adv. Appl. Mech., 14, 67-144 (1974) · doi:10.1016/S0065-2156(08)70031-0
[8] Guarracino, F., Remarks on the stability analysis of some thin-walled structures in the elastic-plastic range, Thin-Walled Struct., 138, 208-214 (2019) · doi:10.1016/j.tws.2019.01.044
[9] Becque, J., The application of plastic flow theory to inelastic column buckling, Int. J. Mech. Sci., 111-112, 116-124 (2016) · doi:10.1016/j.ijmecsci.2016.04.005
[10] Hutchinson, JW; Budiansky, B.; Budiansky, B., Analytical and numerical study of the effects of initial imperfections on the inelastic buckling of a cruciform column, Buckling of structures, 98-105 (1976), Berlin: Springer, Berlin · doi:10.1007/978-3-642-50992-6_10
[11] Onat, ET; Drucker, DC, Inelastic instability and incremental theories of plasticity, J. Aeronaut. Sci., 20, 3, 181-186 (1953) · doi:10.2514/8.2585
[12] Guarracino, F.; Simonelli, MG, The torsional instability of a cruciform column in the plastic range: analysis of an old conundrum, Thin-Walled Struct., 113, 273-286 (2017) · doi:10.1016/j.tws.2016.11.007
[13] Shamass, R.; Alfano, G.; Guarracino, F., A numerical investigation into the plastic buckling paradox for circular cylindrical shells under axial compression, Eng. Struct., 75, 429-447 (2014) · Zbl 1394.74113 · doi:10.1016/j.engstruct.2014.05.050
[14] Shamass, R.; Alfano, G.; Guarracino, F., An investigation into the plastic buckling paradox for circular cylindrical shells under non-proportional loading, Thin-Walled Struct., 95, 347-362 (2015) · Zbl 1394.74113 · doi:10.1016/j.tws.2015.07.020
[15] Shamass, R., Plastic buckling paradox: an updated review, Front. Built Environ. (2020) · doi:10.3389/fbuil.2020.00035
[16] Pifko, A.; Isakson, G., A finite-element method for the plastic buckling analysis of plates, AIAA J., 7, 10, 1950-1957 (1969) · Zbl 0184.51703 · doi:10.2514/3.5487
[17] Bradford, MA; Azhari, M., Inelastic local buckling of plates and plate assemblies using bubble functions, Eng. Struct., 17, 2, 95-103 (1995) · doi:10.1016/0141-0296(95)92640-T
[18] Ibearugbulem, O.; Eziefula, U.; Onwuka, D., Inelastic stability analysis of uniaxially compressed flat rectangular isotropic CCSS plate, Int. J. Appl. Mech. Eng., 20, 3, 637-645 (2015) · doi:10.1515/ijame-2015-0042
[19] Ibearugbulem, O.; Onwuka, D.; Eziefula, U., Inelastic buckling analysis of axially compressed thin CCCC plates using Taylor-Maclaurin displacement function, Acad. Res. Int., 4, 6, 594 (2013)
[20] Onwuka, D.; Eziefula, U.; Ibearugbulem, O., Inelastic buckling of rectangular panel with a simply supported edge and three clamped edges under uniaxial loads, Int. J. Appl. Sci. Eng., 14, 1, 39-48 (2016) · doi:10.6703/IJASE.2016.14(1).39
[21] Eziefula, U.; Onwuka, D.; Ibearugbulem, O., Work principle in inelastic buckling analysis of axially compressed rectangular plates, World J. Eng. (2017) · doi:10.1108/WJE-12-2016-0171
[22] Shrivastava, SC, Inelastic buckling of plates including shear effects, Int. J. Solids Struct., 15, 7, 567-575 (1979) · Zbl 0408.73089 · doi:10.1016/0020-7683(79)90084-2
[23] Guran, A.; Rimrott, FPJ, Application of funicular polygon method to inelastic buckling analysis of plates, Comput. Methods Appl. Mech. Eng., 76, 2, 157-170 (1989) · Zbl 0705.73269 · doi:10.1016/0045-7825(89)90093-5
[24] Lau, SCW; Hancock, GJ, Inelastic buckling analyses of beams, columns and plates using the spline finite strip method, Thin-Walled Struct., 7, 3, 213-238 (1989) · doi:10.1016/0263-8231(89)90026-8
[25] Rio, G., Inelastic buckling of plate, Arch. Mech., 44, 1, 105-116 (1992) · Zbl 0757.73024
[26] Azhari, M.; Bradford, MA, Inelastic initial local buckling of plates with and without residual stresses, Eng. Struct., 15, 1, 31-39 (1993) · doi:10.1016/0141-0296(93)90014-U
[27] Wang, CM; Xiang, Y.; Chakrabarty, J., Elastic/plastic buckling of thick plates, Int. J. Solids Struct., 38, 48, 8617-8640 (2001) · Zbl 1052.74024 · doi:10.1016/S0020-7683(01)00144-5
[28] Wang, CM; Aung, TM, Plastic buckling analysis of thick plates using p-Ritz method, Int. J. Solids Struct., 44, 18, 6239-6255 (2007) · Zbl 1186.74113 · doi:10.1016/j.ijsolstr.2007.02.026
[29] Lotfi, S.; Azhari, M.; Heidarpour, A., Inelastic initial local buckling of skew thin thickness-tapered plates with and without intermediate supports using the isoparametric spline finite strip method, Thin-Walled Struct., 49, 11, 1475-1482 (2011) · doi:10.1016/j.tws.2011.07.013
[30] Zhang, W.; Wang, X., Elastoplastic buckling analysis of thick rectangular plates by using the differential quadrature method, Comput. Math. Appl., 61, 1, 44-61 (2011) · Zbl 1207.74131 · doi:10.1016/j.camwa.2010.10.028
[31] Kasaeian, S.; Azhari, M.; Heidarpour, A.; Hajiannia, A., Inelastic local buckling of curved plates with or without thickness-tapered sections using finite strip method, Int. J. Steel Struct., 12, 3, 427-442 (2012) · doi:10.1007/s13296-012-3011-9
[32] Jaberzadeh, E.; Azhari, M.; Boroomand, B., Inelastic buckling of skew and rhombic thin thickness-tapered plates with and without intermediate supports using the element-free Galerkin method, Appl. Math. Model., 37, 10, 6838-6854 (2013) · doi:10.1016/j.apm.2013.01.055
[33] Kadkhodayan, M.; Maarefdoust, M., Elastic/plastic buckling of isotropic thin plates subjected to uniform and linearly varying in-plane loading using incremental and deformation theories, Aerosp. Sci. Technol., 32, 1, 66-83 (2014) · doi:10.1016/j.ast.2013.12.003
[34] Maarefdoust, M.; Kadkhodayan, M., Elastoplastic buckling analysis of rectangular thick plates by incremental and deformation theories of plasticity, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 229, 7, 1280-1299 (2015) · doi:10.1177/0954410014550047
[35] Maarefdoust, M.; Kadkhodayan, M., Elastic/plastic buckling analysis of skew plates under in-plane shear loading with incremental and deformation theories of plasticity by GDQ method, J. Braz. So. Mech. Sci. Eng., 37, 2, 761-776 (2015) · doi:10.1007/s40430-014-0203-6
[36] Gerard, G., Wildhorn, S.: A study of Poisson’s ratio in the yield region. NACA, Technical Note, No. 2561 (1952)
[37] Ramberg, W., Osgood, W.: Description of stress-strain curves by three parameters. NACA, Technical Note, No. 902 (1943)
[38] Durban, D.; Elishakoff, I., Plastic buckling of rectangular plates under biaxial loading, Studies in Applied Mechanics, 183-194 (1988), Amsterdam: Elsevier, Amsterdam · doi:10.1016/B978-0-444-70474-0.50013-6
[39] Ore, E.; Durban, D., Elastoplastic buckling of annular plates in pure shear, J. Appl. Mech., 56, 3, 644-651 (1989) · Zbl 0711.73100 · doi:10.1115/1.3176141
[40] Durban, D.; Zuckerman, Z., Elastoplastic buckling of rectangular plates in biaxial compression/tension, Int. J. Mech. Sci., 41, 7, 751-765 (1999) · Zbl 0953.74024 · doi:10.1016/S0020-7403(98)00055-1
[41] Betten, J.; Shin, CH, Elastic-plastic buckling analysis of rectangular plates subjected to biaxial loads, Forsch. Ingenieurwes., 65, 9, 273-278 (2000) · doi:10.1007/s100109900023
[42] Kosel, F.; Bremec, B., Elastoplastic buckling of circular annular plates under uniform in-plane loading, Thin-Walled Struct., 42, 1, 101-117 (2004) · doi:10.1016/S0263-8231(03)00126-5
[43] Wang, X.; Huang, J., Elastoplastic buckling analyses of rectangular plates under biaxial loadings by the differential qudrature method, Thin-Walled Struct., 47, 1, 14-20 (2009) · doi:10.1016/j.tws.2008.04.006
[44] Ahmed, MZ; DaDeppo, DA, Stress distribution and buckling stress of plates including edge contact-frictional force effects, Int. J. Solids Struct., 31, 14, 1967-1979 (1994) · Zbl 0946.74504 · doi:10.1016/0020-7683(94)90202-X
[45] Gjelsvik, A.; Lin, G., Plastic buckling of plates with edge frictional shear effects, J. Eng. Mech., 113, 7, 953-964 (1987) · doi:10.1061/(ASCE)0733-9399(1987)113:7(953)
[46] Yao, Z.; Rasmussen, KJR, Inelastic local buckling behaviour of perforated plates and sections under compression, Thin-Walled Struct., 61, 49-70 (2012) · doi:10.1016/j.tws.2012.07.002
[47] Azhari, M.; Saadatpour, MM; Bradford, MA, Inelastic local buckling of flat, thin-walled structures containing thickness-tapered plates, Thin-Walled Struct., 42, 3, 351-368 (2004) · doi:10.1016/j.tws.2003.09.002
[48] Samadi Dinani, A., Azhari, M., Sarrami Foroushani, S.: Elastic and inelastic buckling analysis of thick isotropic and laminated plates using finite layer method. Civ. Eng. Res. J. (2017). doi:10.19080/CERJ.2017.02.555593
[49] Alinia, MM; Gheitasi, A.; Erfani, S., Plastic shear buckling of unstiffened stocky plates, J. Constr. Steel Res., 65, 8, 1631-1643 (2009) · doi:10.1016/j.jcsr.2009.04.001
[50] Alinia, MM; Soltanieh, G.; Amani, M., Inelastic buckling behavior of stocky plates under interactive shear and in-plane bending, Thin-Walled Struct., 55, 76-84 (2012) · doi:10.1016/j.tws.2012.03.007
[51] Smith, ST; Bradford, M.; Oehlers, DJ, Inelastic buckling of rectangular steel plates using a Rayleigh-Ritz method, Int. J. Struct. Stab. Dyn., 3, 4, 503-521 (2003) · doi:10.1142/S021945540300102
[52] Uenoya, M.; Redwood, RG, Elasto-plastic shear buckling of square plates with circular holes, Comput. Struct., 8, 2, 291-300 (1978) · Zbl 0369.73039 · doi:10.1016/0045-7949(78)90036-6
[53] Wang, C.; Aung, TM; Kitipornchai, S.; Xiang, Y., Plastic-buckling of rectangular plates under combined uniaxial and shear stresses, J. Eng. Mech., 135, 8, 892-895 (2009) · doi:10.1061/(ASCE)0733-9399(2009)135:8(892)
[54] Green, AE, Double Fourier series and boundary value problems, Math. Proc. Camb. Philos. Soc., 40, 3, 222-228 (1944) · Zbl 0063.01725 · doi:10.1017/S0305004100018375
[55] Kennedy, JB; Prabhakara, MK, Buckling of simply supported orthotropic skew plates, Aeronaut. Q., 29, 3, 161-174 (1978) · doi:10.1017/S0001925900008428
[56] Li, R.; Zhong, Y.; Tian, B.; Du, J., Exact bending solutions of orthotropic rectangular cantilever thin plates subjected to arbitrary loads, Int. Appl. Mech., 47, 1, 107-119 (2011) · Zbl 1272.74404 · doi:10.1007/s10778-011-0448-z
[57] Li, R.; Zhong, Y.; Tian, B.; Liu, Y., On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates, Appl. Math. Lett., 22, 12, 1821-1827 (2009) · Zbl 1182.35214 · doi:10.1016/j.aml.2009.07.003
[58] Tian, B.; Li, R.; Zhong, Y., Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations, Appl. Math. Model, 39, 1, 128-136 (2015) · Zbl 1428.74144 · doi:10.1016/j.apm.2014.05.012
[59] Tian, B.; Zhong, Y.; Li, R., Analytic bending solutions of rectangular cantilever thin plates, Arch. Civ. Mech. Eng., 11, 4, 1043-1052 (2011) · doi:10.1016/S1644-9665(12)60094-6
[60] Zhang, S.; Xu, L., Bending of rectangular orthotropic thin plates with rotationally restrained edges: a finite integral transform solution, Appl. Math. Model., 46, 48-62 (2017) · Zbl 1443.74135 · doi:10.1016/j.apm.2017.01.053
[61] Guerrero, JSP; Cotta, RM, Integral transform solution for the lid-driven cavity flow problem in stream function-only formulation, Int. J. Numer. Methods Fluids, 15, 4, 399-409 (1992) · Zbl 0753.76139 · doi:10.1002/fld.1650150403
[62] An, C., Gu, J.-J., Su, J.: Integral transform solution of bending problem of clamped orthotropic rectangular plates. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M & C). 2011. Rio de Janeiro, RJ, Brazil: American Nuclear Society (ANS).
[63] Ullah, S.; Zhong, Y.; Zhang, J., Analytical buckling solutions of rectangular thin plates by straightforward generalized integral transform method, Int. J. Mech. Sci., 152, 535-544 (2019) · doi:10.1016/j.ijmecsci.2019.01.025
[64] Zhang, J.; Zhou, C.; Ullah, S.; Zhong, Y.; Li, R., Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates, Appl. Math. Lett., 92, 8-14 (2019) · Zbl 1459.74116 · doi:10.1016/j.aml.2018.12.019
[65] He, Y.; An, C.; Su, J., Generalized integral transform solution for free vibration of orthotropic rectangular plates with free edges, J. Braz. Soc. Mech. Sci. Eng., 42, 4, 183 (2020) · doi:10.1007/s40430-020-2271-0
[66] Python Language Reference: Python Software Foundation. http://www.python.org (2019)
[67] Pride, R., Heimerl, G.: Plastic buckling of simply supported compressed plates. NACA, Technical Note, No. 1817 (1948)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.