FESSDE, a program for the finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations. (English) Zbl 0873.65076

Summary: A FORTRAN 77 program is presented which solves the Sturm-Liouville problem for a system of coupled second-order differential equations by the finite element method using high-order accuracy approximations. The analytic and tabular forms of giving the coefficients of differential equations are considered. Zero-value (Dirichlet) and zero-gradient (Neumann) boundary conditions are also considered.


65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
34-04 Software, source code, etc. for problems pertaining to ordinary differential equations
65Y15 Packaged methods for numerical algorithms
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics


Zbl 0873.65075


Full Text: DOI


[1] Abrashkevich, A.G.; Abrashkevich, D.G.; Kaschiev, M.S.; Puzynin, I.V., Comput. phys. commun., 85, 40, (1995), this issue
[2] Bathe, K.-J., Finite element procedures in engineering analysis, (1982), Prentice-Hall Englewood Cliffs, NJ
[3] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[4] Heinemann, D.; Kolb, D.; Fricke, B.; Heinemann, D.; Fricke, B.; Kolb, D.; Yang, L.; Heinemann, D.; Kolb, D., Chem. phys. lett., Phys. rev. A, Chem. phys. lett., 192, 499, (1992)
[5] Kuppermann, A.; Hipes, P.G.; Hipes, P.G.; Kuppermann, A.; Wolniewicz, L.; Hinze, J.; Pack, R.T.; Parker, G.A., J. chem. phys., Chem. phys. lett., J. chem. phys., J. chem. phys., 87, 3888, (1987)
[6] Lindenberg, J.; Lindenberg, J.; Vessal, B.; Lindenberg, J.; Padkjkr, S.B.; Öhrn, Y.; Vessal, B., (), Int. J. quant. chem., J. chem. phys., 90, 6254, (1989)
[7] Jaquet, R., Theor. chim. acta, Chem. phys., 118, 17, (1987)
[8] Laaksonen, L.; Sundholm, D.; Pyykkö, P.; Laaksonen, L.; Pyykkö, P.; Sundholm, D.; Laaksonen, L.; Pyykkö, P.; Sundholm, D., Chem. phys. lett., Int. J. quant. chem., Comput. phys. rep., Int. J. quant. chem., Int. J. quant. chem., 23, 319, (1983)
[9] Fano, U.; Rau, A.R.P., Atomic collisions and spectra, (1986), Academic New York
[10] Abrashkevich, A.G.; Vinitsky, S.I.; Kaschiev, M.S.; Puzynin, I.V.; Abrashkevich, A.G.; Abrashkevich, D.G.; Kaschiev, M.S.; Puzynin, I.V.; Vinitsky, S.I.; Abrashkevich, A.G.; Abrashkevich, D.G.; Puzynin, I.V.; Vinitsky, S.I.; Abrashkevich, A.G.; Abrashkevich, D.G.; Puzynin, I.V.; Vinitsky, S.I.; Abrashkevich, A.G.; Abrashkevich, D.G.; Kaschiev, M.S.; Puzynin, I.V.; Vinitsky, S.I., Yadern. phys., Sov. J. nucl. phys., J. phys. B, J. phys. B, J. phys. B, Phys. rev. A, 45, 5274, (1992) · Zbl 0976.65075
[11] Lagana, A., Supercomputer algorithms for reactivity, dynamics, and kinetics of small molecules, (1989), Kluwer Dordrecht
[12] ()
[13] Tennyson, J.; Carter, S.; Handy, H.C., Comput. phys. rep., Comput. phys. rep., 5, 117, (1986)
[14] Bačić, Z.; Light, J.C., Ann. rev. phys. chem., 40, 469, (1989)
[15] Faifman, M.P.; Menshikov, L.I.; Ponomarev, L.I.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A., Z. phys. D, 2, 79, (1986)
[16] Puzynin, I.V.; Vinitsky, S.I.; Kamimura, M.; Markushin, V.E., Muon catalyzed fusion, Muon catalyzed fusion, Muon catalyzed fusion, 3, 395, (1988)
[17] Cohen, J.S.; Struensee, M.S., Phys. rev. A, 43, 3460, (1991)
[18] Kimura, T.; Sato, N.; Iwata, S., J. comput. phys., 9, 827, (1988)
[19] Jaquet, R., Comput. phys. commun., 58, 257, (1990)
[20] Stroud, A.H., Approximate calculation of multiple integrals, (1971), Prentice Hall Englewood Cliffs, NJ · Zbl 0379.65013
[21] Press, W.H.; Flanery, B.F.; Teukolsky, S.A.; Vetterley, W.T., Numerical recipes: the art of scientific computing, (1986), Cambridge Univ. Press Cambridge
[22] Johnson, B.R., J. chem. phys., 69, 4678, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.