Numerical solution of multidimensional hyperbolic PDEs using defect correction on adaptive grids. (English) Zbl 1372.65243

Summary: We propose a novel computational approach to obtain high order accurate, finite difference based numerical solutions of hyperbolic partial differential equations (PDEs), through a combination of grid adaptation, non-iterative defect correction and monotonicity preserving interpolation methods. Reduction of local truncation error is achieved primarily due to a particular choice of an adaptive, non-uniform grid where the local Courant-Friedrich-Levy number is unity, along with non-iterative defect correction. A monotonicity preserving interpolant is further used to map the dependent variables from the non-uniform to uniform grids and vice versa. Dimensional splitting techniques are used to extend the range of application of this method from single to multiple dimensions. Using the monotonicity preserving feature of this interpolant, finite difference schemes with high order of accuracy are developed for solving multidimensional, hyperbolic PDEs. In this work, for the proof of concept, five canonical problems including Liouville equations (in one and two dimensions) with spatially dependent drift coefficients and one-dimensional Burgers equation as well as a two-dimensional nonlinear hyperbolic equation are solved. The results demonstrate four major features of the proposed methodology including: (1) the capability to improve the order of accuracy of difference schemes up to any desired level, (2) the ability to obtain the given level of accuracy at a lower computational cost (or time) when compared to some widely used standard finite difference schemes (3) accurate oscillation-free resolution of discontinuities and (4) the computational simplicity for application to multidimensional problems.


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L70 Second-order nonlinear hyperbolic equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)


Full Text: DOI


[1] Alves, MA; Oliveira, PJ; Pinho, FT, A convergent and universally bounded interpolation scheme for the treatment of advection, Int. J. Numer. Meth. Fluids, 41, 47-75, (2003) · Zbl 1025.76024
[2] Babuška, I; Rheinboldt, WC, A-posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng., 12, 1597-1615, (1978) · Zbl 0396.65068
[3] Bagrinovski, KA; Godunov, SK, Difference schemes for multidimensional problems, Dokl Akad Nauk SSSR (NS), 115, 431-1433, (1957) · Zbl 0087.12201
[4] Berger, MJ; Oliger, J, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512, (1984) · Zbl 0536.65071
[5] Blanes, S; Moan, PC, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142, 313-330, (2002) · Zbl 1001.65078
[6] Boileau, M; Chalons, C; Massot, M, Robust numerical coupling of pressure and pressureless gas dynamics equations for Eulerian spray DNS and LES, SIAM J. Sci. Comput., 37, b79-b102, (2015) · Zbl 1320.76052
[7] Bryan, GL; Norman, ML; O’Shea, BW; Abel, T; Wise, JH; Turk, MJ; Reynolds, DR; Collins, DC; Wang, P; Skillman, SW; etal., ENZO: an adaptive mesh refinement code for astrophysics, Astrophys. J. Suppl. Ser., 211, 19, (2014)
[8] Carey, GF; Dinh, HT, Grading functions and mesh redistribution, SIAM J. Numer. Anal., 22, 1028-1040, (1985) · Zbl 0577.65076
[9] Chang, S, A critical analysis of the modified equation technique of warming and hyett, J. Comput. Phys., 86, 107-126, (1990) · Zbl 0689.65059
[10] Chu, KT, Boosting the accuracy of finite difference schemes via optimal time step selection and non-iterative defect correction, Appl. Math. Comput., 218, 3596-3614, (2011) · Zbl 1244.65123
[11] Colella, P; Woodward, PR, The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174-201, (1984) · Zbl 0531.76082
[12] Crandall, M; Majda, A, The method of fractional steps for conservation laws, Numer. Math., 34, 285-314, (1980) · Zbl 0438.65076
[13] Boor, C; Swartz, B, Piecewise monotone interpolation, J. Approx. Theory, 21, 411-416, (1977) · Zbl 0367.41001
[14] Denny, VE; Landis, RB, A new method for solving two-point boundary-value problems using optimal node distribution, J. Comput. Phys., 9, 120-137, (1972) · Zbl 0231.65068
[15] Dougherty, RL; Edelman, AS; Hyman, JM, Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation, Math. Comput., 52, 471-494, (1989) · Zbl 0693.41004
[16] Dumbser, M; Iben, U; Munz, C, Efficient implementation of high order unstructured WENO schemes for cavitating flows, Comput. Fluids, 86, 141-168, (2013) · Zbl 1290.76098
[17] Dwyer, HA, Grid adaptation for problems in fluid dynamics, AIAA J., 22, 1705-1712, (1984) · Zbl 0554.76003
[18] Eiseman, PR, Adaptive grid generation, Comput. Methods Appl. Mech. Eng., 64, 321-376, (1987) · Zbl 0636.65126
[19] Engquist, B; Sjögreen, B, The convergence rate of finite difference schemes in the presence of shocks, SIAM J. Numer. Anal., 35, 2464-2485, (1998) · Zbl 0922.76254
[20] Fedkiw R., Stam J., Jensen H.W.: Visual simulation of smoke. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, ACM, pp. 15-22 (2001)
[21] Ferreira, VG; Kurokawa, FA; Queiroz, RAB; Kaibara, MK; Oishi, CM; Cuminato, JA; Castelo, A; Tomé, MF; McKee, S, Assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, Int. J. Numer. Meth. Fluids, 60, 1-26, (2009) · Zbl 1262.76064
[22] Ferreira, VG; Queiroz, RAB; Lima, GAB; Cuenca, RG; Oishi, CM; Azevedo, JLF; McKee, S, A bounded upwinding scheme for computing convection-dominated transport problems, Comput. Fluids, 57, 208-224, (2012) · Zbl 1365.76190
[23] Gerald, C .F., Wheatley, P .O.: Applied Numerical Analysis. Addison-Wesley, Boston (2004) · Zbl 0684.65002
[24] Gropp, WD, A test of moving mesh refinement for 2-d scalar hyperbolic problems, SIAM J. Sci. Stat. Comput., 1, 191-197, (1980) · Zbl 0445.65096
[25] Guinot, V.: Wave Propagation in Fluids: Models and Numerical Techniques. Wiley, Hoboken, New Jersey, USA (2010) · Zbl 1217.76001
[26] Gustafsson, B; Hemmingsson-Frändén, L, Deferred correction in space and time, J. Sci. Comput., 17, 541-550, (2002) · Zbl 0999.65085
[27] Ha, C; Park, W; Jung, C, Numerical simulations of compressible flows using multi-fluid models, Int. J. Multiph. Flow, 74, 5-18, (2015)
[28] Ha, Y; Lee, YJ; Yoon, J, Modified essentially nonoscillatory schemes based on exponential polynomial interpolation for hyperbolic conservation laws, SIAM J. Numer. Anal., 51, 864-893, (2013) · Zbl 1317.65170
[29] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, New York (2006) · Zbl 1094.65125
[30] Harlander, U; Maas, LR, Two alternatives for solving hyperbolic boundary value problems of geophysical fluid dynamics, J. Fluid Mech., 588, 331, (2007) · Zbl 1141.76439
[31] Harten, A, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393, (1983) · Zbl 0565.65050
[32] Harten, A; Hyman, JM, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys., 50, 235-269, (1981) · Zbl 0565.65049
[33] Hirt, CW, Heuristic stability theory for finite-difference equations, J. Comput. Phys., 2, 339-355, (1968) · Zbl 0187.12101
[34] Hoffman, J.D.: Numerical Methods for Engineers and Scientists. McGraw-Hill, New York (1992) · Zbl 0823.65006
[35] Holden, H., Karlsen, K.H., Lie, K., Risebro, N.H.: Splitting Methods for Partial Differential Equations with Rough Solutions. European Mathematical Society, Zurich (2010) · Zbl 1191.35005
[36] Hyman, JM, Accurate monotonicity preserving cubic interpolation, SIAM J. Sci. Comput., 4, 645-654, (1983) · Zbl 0533.65004
[37] Jiang, G; Shu, C, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228, (1996) · Zbl 0877.65065
[38] Kahan, W; Li, R, Composition constants for raising the orders of unconventional schemes for ordinary differential equations, Math. Comput. Am. Math. Soc., 66, 1089-1099, (1997) · Zbl 0870.65060
[39] Khodier, AMM; Hassan, AY, One-dimensional adaptive grid generation, Int. J. Math. Math. Sci., 20, 577-584, (1997) · Zbl 0880.65065
[40] Klein, R; Bates, KR; Nikiforakis, N, Well-balanced compressible cut-cell simulation of atmospheric flow, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 367, 4559-4575, (2009) · Zbl 1192.86013
[41] Klopfer, G. H., McRae, D. S.: The nonlinear modified equation approach to analyzing finite difference scheme. Paper no. 81-1029, AIAA (1981) · Zbl 0533.65004
[42] Klopfer, GH; McRae, DS, Nonlinear truncation error analysis of finite difference scheme for the Euler equation, AIAA J., 21, 487-494, (1983) · Zbl 0518.76064
[43] Kress, W, Error estimates for deferred correction methods in time, Appl. Numer. Math., 57, 335-353, (2007) · Zbl 1115.65098
[44] Lee, J; Fornberg, B, A split step approach for the 3-d maxwell’s equations, J. Comput. Appl. Math., 158, 485-505, (2003) · Zbl 1029.65094
[45] Leonard, BP, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19, 59-98, (1979) · Zbl 0423.76070
[46] Li, Z; Peng, A; Zhang, H; Yang, J, Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations, Prog. Aerosp. Sci., 74, 81-113, (2015)
[47] Liu, X; Osher, S; Chan, T, Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212, (1994) · Zbl 0811.65076
[48] Marquina, A, Local piecewise hyperbolic reconstruction of numerical fluxes for nonlinear scalar conservation laws, SIAM J. Sci. Comput., 15, 892-915, (1994) · Zbl 0805.65088
[49] McLachlan, RI; Quispel, GRW, Splitting methods, Acta Numerica, 11, 341-434, (2002) · Zbl 1105.65341
[50] Mino, Y; Kagawa, Y; Ishigami, T; Matsuyama, H, Numerical simulation of coalescence phenomena of oil-in-water emulsions permeating through straight membrane pore, Colloids Surf. A, 491, 70-77, (2016)
[51] Pierson, B; Kutler, P, Optimal nodal point distribution for improved accuracy in computational fluid dynamics, AIAA J., 18, 49-54, (1980)
[52] Razi, M; Attar, PJ; Vedula, P, Adaptive finite difference solutions of Liouville equations in computational uncertainty quantification, Reliab. Eng. Syst. Saf., 142, 267-278, (2015)
[53] Razi, M; Attar, PJ; Vedula, P, Grid adaptation and non-iterative defect correction for improved accuracy of numerical solutions of pdes, Appl. Math. Comput., 269C, 473-487, (2015)
[54] Richards, SA, Completed Richardson extrapolation in space and time, Commun. Numer. Methods Eng., 13, 573-582, (1997) · Zbl 0882.65073
[55] Rogerson, AM; Meiburg, E, A numerical study of the convergence properties of ENO schemes, J. Sci. Comput., 5, 151-167, (1990) · Zbl 0732.65086
[56] Shu, C, Numerical experiments on the accuracy of ENO and modified ENO schemes, J. Sci. Comput., 5, 127-149, (1990) · Zbl 0732.65085
[57] Shu, C.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Springer, New York (1998) · Zbl 0927.65111
[58] Shu, C; Osher, S, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471, (1988) · Zbl 0653.65072
[59] Shu, C; Osher, S, Efficient implementation of essentially non-oscillatory shock-capturing schemes. II, J. Comput. Phys., 83, 32-78, (1989) · Zbl 0674.65061
[60] Shyy, W; Garbey, M; Appukuttan, A; Wu, J, Evaluation of Richardson extrapolation in computational fluid dynamics, Numer. Heat Transf.: Part B: Fundam., 41, 139-164, (2002)
[61] Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Cambridge University Press, Cambridge (2003) · Zbl 1041.65001
[62] Skeel, RD, A theoretical framework for proving accuracy results for deferred corrections, SIAM J. Numer. Anal., 19, 171-196, (1982) · Zbl 0489.65051
[63] Spotz, W.F., Carey, G.F.: High-order compact finite difference methods. In: Preliminary proceedings international conference on spectral and high order methods, Houston (1995) · Zbl 0836.76065
[64] Spotz, WF; Carey, GF, Extension of high-order compact schemes to time-dependent problems, Numer. Methods Partial Differ. Equ., 17, 657-672, (2001) · Zbl 0998.65101
[65] Stockie, JM; Mackenzie, JA; Russell, RD, A moving mesh method for one-dimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 22, 1791-1813, (2001) · Zbl 0989.65096
[66] Strang, G, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517, (1968) · Zbl 0184.38503
[67] Su, X, Accurate and robust adaptive mesh refinement for aerodynamic simulation with multi-block structured curvilinear mesh, Int. J. Numer. Meth. Fluids, 77, 747-766, (2015)
[68] Sugiyama, K; Ii, S; Takeuchi, S; Takagi, S; Matsumoto, Y, Full eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow, Comput. Mech., 46, 147-157, (2010) · Zbl 1301.76078
[69] Tannehill, J .C., Anderson, D .D .A., Pletcher, H.R.: Computational Fluid Mechanics and Heat Transfer. Taylor & Francis, Boston (1997) · Zbl 0569.76001
[70] Toro, E .F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, New York (2009) · Zbl 1227.76006
[71] Velechovskỳ, J; Liska, R; Shashkov, M, High-order remapping with piece-wise parabolic reconstruction, Comput. Fluids, 83, 164-169, (2013) · Zbl 1290.76117
[72] Villatoro, FR; Ramos, JI, On the method of modified equations. I: asymptotic analysis of the Euler forward difference method, Appl. Math. Comput., 103, 111-139, (1999) · Zbl 0929.65049
[73] Warming, RF; Hyett, BJ, The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. Comput. Phys., 14, 159-179, (1974) · Zbl 0291.65023
[74] Wegner, JL; Jiang, L; Haddow, JB, Application of a second-order Godunov-type finite difference scheme to a nonlinear elastodynamic problem, Comput. Mech., 8, 355-363, (1991) · Zbl 0739.73042
[75] Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, New York (2009) · Zbl 1185.76005
[76] White, AB, On selection of equidistributing meshes for two-point boundary problems, SIAM J. Numer. Anal., 16, 472-502, (1979) · Zbl 0407.65036
[77] Yamaleev N.K.: Minimization of the truncation error by grid adaptation. Report no. 99-461999, ICASE (1999) · Zbl 0984.65126
[78] Yoshida, H, Construction of higher order symplectic integrators, Phys. Lett. A, 150, 262-268, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.