Vinothkumar, C.; Deiveegan, A.; Nieto, J. J.; Prakash, P. Similarity solutions of fractional parabolic boundary value problems with uncertainty. (English) Zbl 1471.35318 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105926, 11 p. (2021). MSC: 35R13 35K20 65M06 PDF BibTeX XML Cite \textit{C. Vinothkumar} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105926, 11 p. (2021; Zbl 1471.35318) Full Text: DOI OpenURL
Tang, H. S.; Li, L.; Grossberg, M.; Liu, Y. J.; Jia, Y. M.; Li, S. S.; Dong, W. B. An exploratory study on machine learning to couple numerical solutions of partial differential equations. (English) Zbl 1462.65217 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N55 65N06 68T07 35J05 35K20 PDF BibTeX XML Cite \textit{H. S. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021; Zbl 1462.65217) Full Text: DOI arXiv OpenURL
Kao, Chiu-Yen; Mohammadi, Seyyed Abbas Tuning the total displacement of membranes. (English) Zbl 1459.49002 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105706, 19 p. (2021). MSC: 49J20 35J05 35J20 74E30 PDF BibTeX XML Cite \textit{C.-Y. Kao} and \textit{S. A. Mohammadi}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105706, 19 p. (2021; Zbl 1459.49002) Full Text: DOI OpenURL
Nguyen Huy Tuan; Tran Bao Ngoc; Baleanu, Dumitru; O’Regan, Donal On well-posedness of the sub-diffusion equation with conformable derivative model. (English) Zbl 1450.35276 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105332, 25 p. (2020). MSC: 35R11 35K20 35B65 26A33 35Q56 PDF BibTeX XML Cite \textit{Nguyen Huy Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105332, 25 p. (2020; Zbl 1450.35276) Full Text: DOI OpenURL
Martínez, Romeo; Macías-Díaz, J. E.; Hendy, A. S. Corrigendum to: “A numerically efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system”. (English) Zbl 1470.65152 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020). MSC: 65M06 35R11 35L53 35L70 PDF BibTeX XML Cite \textit{R. Martínez} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020; Zbl 1470.65152) Full Text: DOI OpenURL
Cortés, J.-C.; Navarro-Quiles, Ana; Romero, J.-V.; Roselló, M.-D. Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loève expansion and the random variable transformation technique. (English) Zbl 1464.60059 Commun. Nonlinear Sci. Numer. Simul. 72, 121-138 (2019). MSC: 60H10 34F05 60G12 PDF BibTeX XML Cite \textit{J. C. Cortés} et al., Commun. Nonlinear Sci. Numer. Simul. 72, 121--138 (2019; Zbl 1464.60059) Full Text: DOI arXiv OpenURL
Macías-Díaz, J. E. Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations. (English) Zbl 07257380 Commun. Nonlinear Sci. Numer. Simul. 46, 89-102 (2017). MSC: 35R11 35L71 78A25 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Commun. Nonlinear Sci. Numer. Simul. 46, 89--102 (2017; Zbl 07257380) Full Text: DOI OpenURL
Jang, T. S. A new solution procedure for a nonlinear infinite beam equation of motion. (English) Zbl 07249770 Commun. Nonlinear Sci. Numer. Simul. 39, 321-331 (2016). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{T. S. Jang}, Commun. Nonlinear Sci. Numer. Simul. 39, 321--331 (2016; Zbl 07249770) Full Text: DOI OpenURL
Jeon, Junkee; Han, Heejae; Kim, Hyeonuk; Kang, Myungjoo An integral equation representation approach for valuing Russian options with a finite time horizon. (English) Zbl 1470.91280 Commun. Nonlinear Sci. Numer. Simul. 36, 496-516 (2016). MSC: 91G20 91G80 35C15 35K10 35R35 35R60 45G10 PDF BibTeX XML Cite \textit{J. Jeon} et al., Commun. Nonlinear Sci. Numer. Simul. 36, 496--516 (2016; Zbl 1470.91280) Full Text: DOI OpenURL
Li, Tongxing; Saker, S. H. A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales. (English) Zbl 1470.34239 Commun. Nonlinear Sci. Numer. Simul. 19, No. 12, 4185-4188 (2014). MSC: 34N05 34K11 PDF BibTeX XML Cite \textit{T. Li} and \textit{S. H. Saker}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 12, 4185--4188 (2014; Zbl 1470.34239) Full Text: DOI OpenURL
Zhao, Zhihong; Rong, Erhua Reaction diffusion equation with spatio-temporal delay. (English) Zbl 1457.35019 Commun. Nonlinear Sci. Numer. Simul. 19, No. 7, 2252-2261 (2014). MSC: 35K57 35K20 35A01 35A02 35B35 35R10 PDF BibTeX XML Cite \textit{Z. Zhao} and \textit{E. Rong}, Commun. Nonlinear Sci. Numer. Simul. 19, No. 7, 2252--2261 (2014; Zbl 1457.35019) Full Text: DOI OpenURL
Sakthivel, R.; Ren, Y. Exponential stability of second-order stochastic evolution equations with Poisson jumps. (English) Zbl 1273.60077 Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 4517-4523 (2012). Reviewer: Hans Crauel (Frankfurt am Main) MSC: 60H15 34K20 34K50 35B35 35R60 93E15 PDF BibTeX XML Cite \textit{R. Sakthivel} and \textit{Y. Ren}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 12, 4517--4523 (2012; Zbl 1273.60077) Full Text: DOI OpenURL
Bhrawy, Ali H.; Alofi, A. S. A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations. (English) Zbl 1244.65099 Commun. Nonlinear Sci. Numer. Simul. 17, No. 1, 62-70 (2012). MSC: 65L05 65L60 34A34 PDF BibTeX XML Cite \textit{A. H. Bhrawy} and \textit{A. S. Alofi}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 1, 62--70 (2012; Zbl 1244.65099) Full Text: DOI OpenURL
Khader, M. M. On the numerical solutions for the fractional diffusion equation. (English) Zbl 1221.65263 Commun. Nonlinear Sci. Numer. Simul. 16, No. 6, 2535-2542 (2011). MSC: 65M70 35R11 26A33 35K20 45K05 PDF BibTeX XML Cite \textit{M. M. Khader}, Commun. Nonlinear Sci. Numer. Simul. 16, No. 6, 2535--2542 (2011; Zbl 1221.65263) Full Text: DOI OpenURL
Saker, S. H.; O’Regan, Donal New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution. (English) Zbl 1221.34245 Commun. Nonlinear Sci. Numer. Simul. 16, No. 1, 423-434 (2011). MSC: 34N05 34K11 34K40 PDF BibTeX XML Cite \textit{S. H. Saker} and \textit{D. O'Regan}, Commun. Nonlinear Sci. Numer. Simul. 16, No. 1, 423--434 (2011; Zbl 1221.34245) Full Text: DOI OpenURL
Guha, Partha; Choudhury, A. Ghose; Khanra, Barun First integrals for time-dependent higher-order Riccati equations by nonholonomic transformation. (English) Zbl 1223.65053 Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 3062-3070 (2011). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65L05 34A34 PDF BibTeX XML Cite \textit{P. Guha} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 3062--3070 (2011; Zbl 1223.65053) Full Text: DOI OpenURL
Lin, Muren; Xia, Yong-Hui On the solutions of a second order nonlinear system with almost periodic forcing. (English) Zbl 1222.34048 Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3525-3535 (2010); corrigendum ibid. 16, No. 3, 1702 (2011). MSC: 34C27 34C29 PDF BibTeX XML Cite \textit{M. Lin} and \textit{Y.-H. Xia}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3525--3535 (2010; Zbl 1222.34048) Full Text: DOI OpenURL
Sun, Dexian A note for a second order periodic linear differential equation. (English) Zbl 1222.34065 Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3339-3348 (2010). MSC: 34D08 15A18 15A42 34L15 PDF BibTeX XML Cite \textit{D. Sun}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3339--3348 (2010; Zbl 1222.34065) Full Text: DOI OpenURL
Van Gorder, Robert A.; Vajravelu, K. Third-order partial differential equations arising in the impulsive motion of a flat plate. (English) Zbl 1221.74053 Commun. Nonlinear Sci. Numer. Simul. 14, No. 6, 2629-2636 (2009); corrigendum ibid. 15, No. 12, 4242-4243 (2010). MSC: 74K20 PDF BibTeX XML Cite \textit{R. A. Van Gorder} and \textit{K. Vajravelu}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 6, 2629--2636 (2009; Zbl 1221.74053) Full Text: DOI OpenURL
Majid, Fayequa B.; Ranasinghe, Arjuna I. Solution of the Burgers equation using an implicit linearizing transformation. (English) Zbl 1221.35354 Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 1861-1867 (2009). MSC: 35Q53 35K20 PDF BibTeX XML Cite \textit{F. B. Majid} and \textit{A. I. Ranasinghe}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 5, 1861--1867 (2009; Zbl 1221.35354) Full Text: DOI OpenURL
Ray, Santanu Saha An application of the modified decomposition method for the solution of the coupled Klein-Gordon-Schrödinger equation. (English) Zbl 1221.65283 Commun. Nonlinear Sci. Numer. Simul. 13, No. 7, 1311-1317 (2008). MSC: 65M99 35Q55 35L70 PDF BibTeX XML Cite \textit{S. S. Ray}, Commun. Nonlinear Sci. Numer. Simul. 13, No. 7, 1311--1317 (2008; Zbl 1221.65283) Full Text: DOI OpenURL
Tang, Yaning; Xu, Wei; Shen, Jianwei; Gao, Liang Bifurcations of traveling wave solutions for a generalized sinh-Gordon equation. (English) Zbl 1221.35367 Commun. Nonlinear Sci. Numer. Simul. 13, No. 6, 1048-1055 (2008). MSC: 35Q53 34C23 34C25 35L70 35Q51 37G15 PDF BibTeX XML Cite \textit{Y. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 13, No. 6, 1048--1055 (2008; Zbl 1221.35367) Full Text: DOI OpenURL
Gusev, S. A. Monte Carlo estimates of the solution of a parabolic equation and its derivatives made by solving stochastic differential equations. (English) Zbl 1037.35110 Commun. Nonlinear Sci. Numer. Simul. 9, No. 2, 177-185 (2004). MSC: 35R60 35K20 35B30 65C05 65C30 PDF BibTeX XML Cite \textit{S. A. Gusev}, Commun. Nonlinear Sci. Numer. Simul. 9, No. 2, 177--185 (2004; Zbl 1037.35110) Full Text: DOI OpenURL
Ibragimov, N. H.; Torrisi, M.; Valenti, A. Differential invariants of nonlinear equations \(v_{tt}=f(x,v_{x})v_{xx}+g(x,v_{x})\). (English) Zbl 1035.35081 Commun. Nonlinear Sci. Numer. Simul. 9, No. 1, 69-80 (2004). Reviewer: Valery A. Yumaguzhin (Opava) MSC: 35L70 58J70 54H15 PDF BibTeX XML Cite \textit{N. H. Ibragimov} et al., Commun. Nonlinear Sci. Numer. Simul. 9, No. 1, 69--80 (2004; Zbl 1035.35081) Full Text: DOI OpenURL