Vabishchevich, Petr N. Computational identification of the lowest space-wise dependent coefficient of a parabolic equation. (English) Zbl 1481.65177 Appl. Math. Modelling 65, 361-376 (2019). MSC: 65M32 35R30 65M06 35K20 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Appl. Math. Modelling 65, 361--376 (2019; Zbl 1481.65177) Full Text: DOI arXiv OpenURL
Han, Huan; Li, Xing; Zhou, Huan-Song 3D mathematical model and numerical simulation for laying marine cable along prescribed trajectory on seabed. (English) Zbl 1480.35325 Appl. Math. Modelling 60, 94-111 (2018). MSC: 35Q35 35L53 35L70 35R35 65M06 PDF BibTeX XML Cite \textit{H. Han} et al., Appl. Math. Modelling 60, 94--111 (2018; Zbl 1480.35325) Full Text: DOI OpenURL
Poloskov, Igor E.; Soize, Christian Symbolic and numeric scheme for solution of linear integro-differential equations with random parameter uncertainties and Gaussian stochastic process input. (English) Zbl 1480.65010 Appl. Math. Modelling 56, 15-31 (2018). MSC: 65C05 45K05 60H35 PDF BibTeX XML Cite \textit{I. E. Poloskov} and \textit{C. Soize}, Appl. Math. Modelling 56, 15--31 (2018; Zbl 1480.65010) Full Text: DOI Link OpenURL
Chen, Hongbin; Xu, Da; Peng, Yulong A second order BDF alternating direction implicit difference scheme for the two-dimensional fractional evolution equation. (English) Zbl 1443.65439 Appl. Math. Modelling 41, 54-67 (2017). MSC: 65R20 45K05 26A33 65M06 65M12 PDF BibTeX XML Cite \textit{H. Chen} et al., Appl. Math. Modelling 41, 54--67 (2017; Zbl 1443.65439) Full Text: DOI OpenURL
Xu, Zhijie; Tipireddy, Ramakrishna; Lin, Guang Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients. (English) Zbl 1465.65003 Appl. Math. Modelling 40, No. 9-10, 5542-5559 (2016). MSC: 65C05 35J25 35R60 60H30 PDF BibTeX XML Cite \textit{Z. Xu} et al., Appl. Math. Modelling 40, No. 9--10, 5542--5559 (2016; Zbl 1465.65003) Full Text: DOI OpenURL
Zhang, Jinliang; Wei, Pengbo; Wang, Mingliang The investigation into the exact solutions of the generalized time-delayed Burgers-Fisher equation with positive fractional power terms. (English) Zbl 1242.35197 Appl. Math. Modelling 36, No. 5, 2192-2196 (2012). MSC: 35Q53 35L72 35C07 PDF BibTeX XML Cite \textit{J. Zhang} et al., Appl. Math. Modelling 36, No. 5, 2192--2196 (2012; Zbl 1242.35197) Full Text: DOI OpenURL
Das, S.; Vishal, K.; Gupta, P. K. Solution of the nonlinear fractional diffusion equation with absorbent term and external force. (English) Zbl 1221.35437 Appl. Math. Modelling 35, No. 8, 3970-3979 (2011). MSC: 35R11 26A33 65M99 35K20 35K59 45K05 PDF BibTeX XML Cite \textit{S. Das} et al., Appl. Math. Modelling 35, No. 8, 3970--3979 (2011; Zbl 1221.35437) Full Text: DOI OpenURL
Keane, Therese Combat modelling with partial differential equations. (English) Zbl 1219.35318 Appl. Math. Modelling 35, No. 6, 2723-2735 (2011). MSC: 35Q91 91A80 35K40 PDF BibTeX XML Cite \textit{T. Keane}, Appl. Math. Modelling 35, No. 6, 2723--2735 (2011; Zbl 1219.35318) Full Text: DOI Link OpenURL
Yang, Liu; Yu, Jian-Ning; Deng, Zui-Cha An inverse problem of identifying the coefficient of parabolic equation. (English) Zbl 1145.35468 Appl. Math. Modelling 32, No. 10, 1984-1995 (2008). MSC: 35R30 49J20 35K20 PDF BibTeX XML Cite \textit{L. Yang} et al., Appl. Math. Modelling 32, No. 10, 1984--1995 (2008; Zbl 1145.35468) Full Text: DOI OpenURL
Watanabe, Masaji; Kawai, Fusako Mathematical modelling and computational analysis of enzymatic degradation of xenobiotic polymers. (English) Zbl 1176.92019 Appl. Math. Modelling 30, No. 12, 1497-1514 (2006). MSC: 92C40 35L10 65C20 93A30 35Q92 35R30 PDF BibTeX XML Cite \textit{M. Watanabe} and \textit{F. Kawai}, Appl. Math. Modelling 30, No. 12, 1497--1514 (2006; Zbl 1176.92019) Full Text: DOI OpenURL
Roy, D. A weak form of stochastic Newmark method with applications to engineering dynamical systems. (English) Zbl 1029.60054 Appl. Math. Modelling 27, No. 6, 421-436 (2003). Reviewer: Evelyn Buckwar (Berlin) MSC: 60H35 65C30 60K40 65C05 34F05 70L05 PDF BibTeX XML Cite \textit{D. Roy}, Appl. Math. Modelling 27, No. 6, 421--436 (2003; Zbl 1029.60054) Full Text: DOI OpenURL
Young, D. L.; Chang, T. J.; Eldho, T. I. The Riemann complex boundary element method for the solutions of two-dimensional elliptic equations. (English) Zbl 1014.65124 Appl. Math. Modelling 26, No. 9, 893-911 (2002). MSC: 65N38 35J05 76M15 35J25 76B07 PDF BibTeX XML Cite \textit{D. L. Young} et al., Appl. Math. Modelling 26, No. 9, 893--911 (2002; Zbl 1014.65124) Full Text: DOI OpenURL
El-Halafawy, F. Z.; Eissa, M. Software for the Frobenius method for the solution of nonlinear differential equations. (English) Zbl 0633.65071 Appl. Math. Modelling 11, 229-232 (1987). Reviewer: V.A.Velev MSC: 65L05 34A34 34-04 PDF BibTeX XML Cite \textit{F. Z. El-Halafawy} and \textit{M. Eissa}, Appl. Math. Modelling 11, 229--232 (1987; Zbl 0633.65071) Full Text: DOI OpenURL
Raman, V. M. On analytical solutions of vibrations of rods with variable cross sections. (English) Zbl 0549.73047 Appl. Math. Modelling 7, 356-361 (1983). MSC: 74H45 74K10 PDF BibTeX XML Cite \textit{V. M. Raman}, Appl. Math. Modelling 7, 356--361 (1983; Zbl 0549.73047) Full Text: DOI OpenURL
Jain, M. K.; Jain, R. K.; Anatha Krishnaiah, U. Hybrid numerical methods for periodic initial value problems involving second-order differential equations. (English) Zbl 0477.65056 Appl. Math. Modelling 5, 53-56 (1981). MSC: 65L05 65L20 70F15 34C25 PDF BibTeX XML Cite \textit{M. K. Jain} et al., Appl. Math. Modelling 5, 53--56 (1981; Zbl 0477.65056) Full Text: DOI OpenURL
Symm, George T. Two methods for computing the capacitance of a quadrilateral. (English) Zbl 0475.35040 Appl. Math. Modelling 5, 428-431 (1981). MSC: 35J25 31A15 65M99 65N99 PDF BibTeX XML Cite \textit{G. T. Symm}, Appl. Math. Modelling 5, 428--431 (1981; Zbl 0475.35040) Full Text: DOI OpenURL
Forsyth, P. jun.; Rasmussen, H. On the boundary conditions for wind-driven lake circulation models. (English) Zbl 0428.76023 Appl. Math. Modelling 4, 139-141 (1980). MSC: 76B99 PDF BibTeX XML Cite \textit{P. Forsyth jun.} and \textit{H. Rasmussen}, Appl. Math. Modelling 4, 139--141 (1980; Zbl 0428.76023) Full Text: DOI OpenURL