Hoppe, Fabian; Neitzel, Ira Optimal control of quasilinear parabolic PDEs with state-constraints. (English) Zbl 1483.49027 SIAM J. Control Optim. 60, No. 1, 330-354 (2022). MSC: 49K20 35K59 49K27 PDF BibTeX XML Cite \textit{F. Hoppe} and \textit{I. Neitzel}, SIAM J. Control Optim. 60, No. 1, 330--354 (2022; Zbl 1483.49027) Full Text: DOI OpenURL
Yang, Hui; Han, Yuzhu Lifespan of solutions to a hyperbolic type Kirchhoff equation with arbitrarily high initial energy. (English) Zbl 1483.35049 J. Math. Anal. Appl. 510, No. 2, Article ID 126023, 16 p. (2022). MSC: 35B44 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Han}, J. Math. Anal. Appl. 510, No. 2, Article ID 126023, 16 p. (2022; Zbl 1483.35049) Full Text: DOI OpenURL
Chen, Jie; Wang, Baoxiang Almost sure scattering for the nonlinear Klein-Gordon equations with Sobolev critical power. (English) Zbl 1483.35136 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022). MSC: 35L71 35L15 35P25 35R60 PDF BibTeX XML Cite \textit{J. Chen} and \textit{B. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112732, 33 p. (2022; Zbl 1483.35136) Full Text: DOI arXiv OpenURL
Kim, Kyeong-Hun; Lee, Kijung; Seo, Jinsol A refined Green’s function estimate of the time measurable parabolic operators with conic domains. (English) Zbl 1483.35103 Potential Anal. 56, No. 2, 317-331 (2022). MSC: 35K08 35K20 60H15 PDF BibTeX XML Cite \textit{K.-H. Kim} et al., Potential Anal. 56, No. 2, 317--331 (2022; Zbl 1483.35103) Full Text: DOI arXiv OpenURL
Zhou, Hua-Cheng; Wu, Ze-Hao; Guo, Bao-Zhu; Chen, Yangquan Boundary stabilization and disturbance rejection for an unstable time fractional diffusion-wave equation. (English) Zbl 1482.35263 ESAIM, Control Optim. Calc. Var. 28, Paper No. 7, 30 p. (2022). MSC: 35R11 35K20 35L20 37L15 93B52 93D15 93B51 PDF BibTeX XML Cite \textit{H.-C. Zhou} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 7, 30 p. (2022; Zbl 1482.35263) Full Text: DOI OpenURL
Taylor, Michael Bôcher’s theorem with rough coefficients. (English) Zbl 1483.35083 Potential Anal. 56, No. 1, 65-86 (2022). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35J05 35J15 35S05 31B05 PDF BibTeX XML Cite \textit{M. Taylor}, Potential Anal. 56, No. 1, 65--86 (2022; Zbl 1483.35083) Full Text: DOI OpenURL
Ouzahra, Mohamed Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. (English) Zbl 1481.35256 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 1075-1090 (2022). MSC: 35K57 35K20 35K58 47D06 93B05 93C20 PDF BibTeX XML Cite \textit{M. Ouzahra}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 1075--1090 (2022; Zbl 1481.35256) Full Text: DOI arXiv OpenURL
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana; Soria, Fernando On the KPZ equation with fractional diffusion: global regularity and existence results. (English) Zbl 1481.35258 J. Differ. Equations 312, 65-147 (2022). MSC: 35K59 35B51 35B65 35K20 35R11 47G20 47J35 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., J. Differ. Equations 312, 65--147 (2022; Zbl 1481.35258) Full Text: DOI arXiv OpenURL
Gross, Leonard The Yang-Mills heat equation with finite action in three dimensions. (English) Zbl 1482.35001 Memoirs of the American Mathematical Society 1349. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5053-3/pbk; 978-1-4704-7015-9/ebook). v, 111 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35-02 35K58 35K65 70S15 35K51 58J35 81T13 PDF BibTeX XML Cite \textit{L. Gross}, The Yang-Mills heat equation with finite action in three dimensions. Providence, RI: American Mathematical Society (AMS) (2022; Zbl 1482.35001) Full Text: DOI arXiv OpenURL
Lhachemi, Hugo; Prieur, Christophe; Trélat, Emmanuel Proportional integral regulation control of a one-dimensional semilinear wave equation. (English) Zbl 1481.35266 SIAM J. Control Optim. 60, No. 1, 1-21 (2022). Reviewer: Kaïs Ammari (Monastir) MSC: 35L20 35L71 93C20 PDF BibTeX XML Cite \textit{H. Lhachemi} et al., SIAM J. Control Optim. 60, No. 1, 1--21 (2022; Zbl 1481.35266) Full Text: DOI arXiv OpenURL
Guo, Lun; Li, Qi Multiple high energy solutions for fractional Schrödinger equation with critical growth. (English) Zbl 1481.35144 Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 15, 26 p. (2022). MSC: 35J10 35R11 35J61 35B33 35J20 PDF BibTeX XML Cite \textit{L. Guo} and \textit{Q. Li}, Calc. Var. Partial Differ. Equ. 61, No. 1, Paper No. 15, 26 p. (2022; Zbl 1481.35144) Full Text: DOI OpenURL
Berra, Michele; de Hoop, Maarten V.; Romero, José Luis A multi-scale Gaussian beam parametrix for the wave equation: the Dirichlet boundary value problem. (English) Zbl 1480.35027 J. Differ. Equations 309, 949-993 (2022). MSC: 35B40 35C10 35L05 35L20 35S05 42C15 PDF BibTeX XML Cite \textit{M. Berra} et al., J. Differ. Equations 309, 949--993 (2022; Zbl 1480.35027) Full Text: DOI arXiv OpenURL
Dubey, Shweta; Chakraverty, S. Homotopy perturbation method for solving fuzzy fractional heat-conduction equation. (English) Zbl 1480.35403 Allahviranloo, Tofigh (ed.) et al., Advances in fuzzy integral and differential equations. Cham: Springer. Stud. Fuzziness Soft Comput. 412, 159-169 (2022). MSC: 35R13 35R11 35K05 35K15 PDF BibTeX XML Cite \textit{S. Dubey} and \textit{S. Chakraverty}, Stud. Fuzziness Soft Comput. 412, 159--169 (2022; Zbl 1480.35403) Full Text: DOI OpenURL
Kaltenbacher, Barbara; Rundell, William On an inverse problem of nonlinear imaging with fractional damping. (English) Zbl 1479.35951 Math. Comput. 91, No. 333, 245-276 (2022). MSC: 35R30 35R11 35L20 35L72 78A46 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Math. Comput. 91, No. 333, 245--276 (2022; Zbl 1479.35951) Full Text: DOI arXiv OpenURL
Sun, Yue; Yang, Zhijian Longtime dynamics for a nonlinear viscoelastic equation with time-dependent memory kernel. (English) Zbl 1479.35118 Nonlinear Anal., Real World Appl. 64, Article ID 103432, 26 p. (2022). MSC: 35B40 35B41 35L20 35L72 35R09 74D10 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{Z. Yang}, Nonlinear Anal., Real World Appl. 64, Article ID 103432, 26 p. (2022; Zbl 1479.35118) Full Text: DOI OpenURL
Wei, Ting; Xian, Jun Determining a time-dependent coefficient in a time-fractional diffusion-wave equation with the Caputo derivative by an additional integral condition. (English) Zbl 1479.35957 J. Comput. Appl. Math. 404, Article ID 113910, 22 p. (2022). MSC: 35R30 35L20 35R11 65M32 PDF BibTeX XML Cite \textit{T. Wei} and \textit{J. Xian}, J. Comput. Appl. Math. 404, Article ID 113910, 22 p. (2022; Zbl 1479.35957) Full Text: DOI OpenURL
Moreira, Estefani M.; Valero, José Structure of the attractor for a non-local Chafee-Infante problem. (English) Zbl 1479.35132 J. Math. Anal. Appl. 507, No. 2, Article ID 125801, 25 p. (2022). MSC: 35B41 35K20 35K59 35R09 PDF BibTeX XML Cite \textit{E. M. Moreira} and \textit{J. Valero}, J. Math. Anal. Appl. 507, No. 2, Article ID 125801, 25 p. (2022; Zbl 1479.35132) Full Text: DOI arXiv OpenURL
Misiats, Oleksandr; Stanzhytskyi, Oleksandr; Topaloglu, Ihsan On global existence and blowup of solutions of stochastic Keller-Segel type equation. (English) Zbl 1479.35146 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 3, 29 p. (2022). MSC: 35B44 35K15 35K59 35R60 60H30 65M75 92C17 PDF BibTeX XML Cite \textit{O. Misiats} et al., NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 3, 29 p. (2022; Zbl 1479.35146) Full Text: DOI arXiv OpenURL
Prakash, R.; Hrizi, M.; Novotny, A. A. A noniterative reconstruction method for solving a time-fractional inverse source problem from partial boundary measurements. (English) Zbl 1479.35955 Inverse Probl. 38, No. 1, Article ID 015002, 27 p. (2022). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{R. Prakash} et al., Inverse Probl. 38, No. 1, Article ID 015002, 27 p. (2022; Zbl 1479.35955) Full Text: DOI OpenURL
Cardaliaguet, Pierre; Dirr, Nicolas; Souganidis, Panagiotis E. Scaling limits and stochastic homogenization for some nonlinear parabolic equations. (English) Zbl 1479.35058 J. Differ. Equations 307, 389-443 (2022). MSC: 35B27 35K15 35K59 35R60 PDF BibTeX XML Cite \textit{P. Cardaliaguet} et al., J. Differ. Equations 307, 389--443 (2022; Zbl 1479.35058) Full Text: DOI arXiv OpenURL
Dai, Xiaoqiang; Han, Jiangbo; Lin, Qiang; Tian, Xueteng Anomalous pseudo-parabolic Kirchhoff-type dynamical model. (English) Zbl 1479.35544 Adv. Nonlinear Anal. 11, 503-534 (2022). MSC: 35K70 35B40 35B44 35K20 35K59 35R11 PDF BibTeX XML Cite \textit{X. Dai} et al., Adv. Nonlinear Anal. 11, 503--534 (2022; Zbl 1479.35544) Full Text: DOI OpenURL
Liu, Changchun; Mei, Ming; Yang, Jiaqi Global stability of traveling waves for nonlocal time-delayed degenerate diffusion equation. (English) Zbl 1478.35039 J. Differ. Equations 306, 60-100 (2022). MSC: 35B40 35C07 35K15 35K65 35K59 35R09 35R10 PDF BibTeX XML Cite \textit{C. Liu} et al., J. Differ. Equations 306, 60--100 (2022; Zbl 1478.35039) Full Text: DOI OpenURL
Kim, Yong-Cheol Nonlocal Harnack inequalities for nonlocal Schrödinger operators with \(A_1\)-Muckenhoupt potentials. (English) Zbl 1478.35057 J. Math. Anal. Appl. 507, No. 1, Article ID 125746, 27 p. (2022). Reviewer: Vincenzo Vespri (Firenze) MSC: 35B45 35B65 35J10 35J15 35R09 PDF BibTeX XML Cite \textit{Y.-C. Kim}, J. Math. Anal. Appl. 507, No. 1, Article ID 125746, 27 p. (2022; Zbl 1478.35057) Full Text: DOI OpenURL
Hao, Jianghao; Du, Fangqing Decay and blow-up for a viscoelastic wave equation of variable coefficients with logarithmic nonlinearity. (English) Zbl 1475.35044 J. Math. Anal. Appl. 506, No. 1, Article ID 125608, 20 p. (2022). MSC: 35B40 35B44 35L20 35L71 35R09 PDF BibTeX XML Cite \textit{J. Hao} and \textit{F. Du}, J. Math. Anal. Appl. 506, No. 1, Article ID 125608, 20 p. (2022; Zbl 1475.35044) Full Text: DOI OpenURL
Jin, Kun-Peng; Liang, Jin; Xiao, Ti-Jun New general decay result for a class of neutral viscoelastic equations. (English) Zbl 1475.35047 J. Math. Anal. Appl. 506, No. 2, Article ID 125673, 26 p. (2022). MSC: 35B40 35L20 35R09 PDF BibTeX XML Cite \textit{K.-P. Jin} et al., J. Math. Anal. Appl. 506, No. 2, Article ID 125673, 26 p. (2022; Zbl 1475.35047) Full Text: DOI OpenURL
Li, Tingting; Lu, Jianfang; Shu, Chi-Wang Stability analysis of inverse Lax-Wendroff boundary treatment of high order compact difference schemes for parabolic equations. (English) Zbl 1481.65145 J. Comput. Appl. Math. 400, Article ID 113711, 26 p. (2022). MSC: 65M06 65L06 65M20 65N25 65M12 35K10 PDF BibTeX XML Cite \textit{T. Li} et al., J. Comput. Appl. Math. 400, Article ID 113711, 26 p. (2022; Zbl 1481.65145) Full Text: DOI OpenURL
Sayevand, K.; Machado, J. Tenreiro; Masti, I. Analysis of dual Bernstein operators in the solution of the fractional convection-diffusion equation arising in underground water pollution. (English) Zbl 1472.35441 J. Comput. Appl. Math. 399, Article ID 113729, 18 p. (2022). MSC: 35R11 35K20 92D40 PDF BibTeX XML Cite \textit{K. Sayevand} et al., J. Comput. Appl. Math. 399, Article ID 113729, 18 p. (2022; Zbl 1472.35441) Full Text: DOI OpenURL
Aliev, Bahram A.; Kerimov, Vugar Z.; Yakubov, Yakov S. Solvability of a boundary value problem for a second order elliptic differential-operator equation with a complex parameter. (English) Zbl 1482.34141 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 2, 309-326 (2021). MSC: 34G10 34B40 35J25 PDF BibTeX XML Cite \textit{B. A. Aliev} et al., Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 2, 309--326 (2021; Zbl 1482.34141) Full Text: DOI OpenURL
Ha, Tae Gab; Park, Sun-Hye Existence and general decay for a viscoelastic equation with logarithmic nonlinearity. (English) Zbl 1483.35029 J. Korean Math. Soc. 58, No. 6, 1433-1448 (2021). MSC: 35B40 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{T. G. Ha} and \textit{S.-H. Park}, J. Korean Math. Soc. 58, No. 6, 1433--1448 (2021; Zbl 1483.35029) Full Text: DOI OpenURL
Kian, Yavar; Soccorsi, Éric; Xue, Qi; Yamamoto, Masahiro Identification of time-varying source term in time-fractional diffusion equations. (English) Zbl 1483.35342 Commun. Math. Sci. 20, No. 1, 53-84 (2021). MSC: 35R30 35A02 35K20 35R11 65M32 PDF BibTeX XML Cite \textit{Y. Kian} et al., Commun. Math. Sci. 20, No. 1, 53--84 (2021; Zbl 1483.35342) Full Text: DOI arXiv OpenURL
Ambrosio, Vincenzo The nonlinear fractional relativistic Schrödinger equation: existence, multiplicity, decay and concentration results. (English) Zbl 1483.35314 Discrete Contin. Dyn. Syst. 41, No. 12, 5659-5705 (2021). MSC: 35R11 35J10 35J20 35J60 35B09 58E05 PDF BibTeX XML Cite \textit{V. Ambrosio}, Discrete Contin. Dyn. Syst. 41, No. 12, 5659--5705 (2021; Zbl 1483.35314) Full Text: DOI arXiv OpenURL
Yao, Shao-Wen A rigid pendulum in a microgravity: some special properties and a two-scale fractal model. (English) Zbl 1482.35260 Fractals 29, No. 6, Article ID 2150127, 7 p. (2021). MSC: 35R11 35L71 PDF BibTeX XML Cite \textit{S.-W. Yao}, Fractals 29, No. 6, Article ID 2150127, 7 p. (2021; Zbl 1482.35260) Full Text: DOI OpenURL
Davydov, A. A.; Melnik, D. A. Optimal states of distributed exploited populations with periodic impulse harvesting. (English. Russian original) Zbl 1482.35265 Proc. Steklov Inst. Math. 315, Suppl. 1, S81-S88 (2021); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 2, 99-107 (2021). MSC: 35R12 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{A. A. Davydov} and \textit{D. A. Melnik}, Proc. Steklov Inst. Math. 315, S81--S88 (2021; Zbl 1482.35265); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 27, No. 2, 99--107 (2021) Full Text: DOI OpenURL
Wehbe, Ali; Nasser, Rayan; Noun, Nahla Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. (English) Zbl 1481.35041 Math. Control Relat. Fields 11, No. 4, 885-904 (2021). MSC: 35B35 35L20 93B52 93C20 PDF BibTeX XML Cite \textit{A. Wehbe} et al., Math. Control Relat. Fields 11, No. 4, 885--904 (2021; Zbl 1481.35041) Full Text: DOI OpenURL
Jiang, Danhua; Lam, King-Yeung; Lou, Yuan Competitive exclusion in a nonlocal reaction-diffusion-advection model of phytoplankton populations. (English) Zbl 1481.35056 Nonlinear Anal., Real World Appl. 61, Article ID 103350, 15 p. (2021). MSC: 35B40 35K57 35J25 35P15 35R09 92D25 PDF BibTeX XML Cite \textit{D. Jiang} et al., Nonlinear Anal., Real World Appl. 61, Article ID 103350, 15 p. (2021; Zbl 1481.35056) Full Text: DOI OpenURL
Núñez, D.; Larreal, O.; Murcia, L. Odd periodic oscillations in Comb-drive finger actuators. (English) Zbl 1478.34061 Nonlinear Anal., Real World Appl. 61, Article ID 103347, 9 p. (2021). MSC: 34C60 34C25 34D20 47N20 74M15 PDF BibTeX XML Cite \textit{D. Núñez} et al., Nonlinear Anal., Real World Appl. 61, Article ID 103347, 9 p. (2021; Zbl 1478.34061) Full Text: DOI OpenURL
Ma, Li; Feng, Zhaosheng Stability and bifurcation in a two-species reaction-diffusion-advection competition model with time delay. (English) Zbl 1481.35039 Nonlinear Anal., Real World Appl. 61, Article ID 103327, 32 p. (2021). MSC: 35B32 35K51 35K57 35R10 92D25 PDF BibTeX XML Cite \textit{L. Ma} and \textit{Z. Feng}, Nonlinear Anal., Real World Appl. 61, Article ID 103327, 32 p. (2021; Zbl 1481.35039) Full Text: DOI OpenURL
Zhang, Liangdi Gradient estimate for the forward conjugate heat equation of forms under the Ricci flow. (English) Zbl 1481.35097 Int. J. Math. 32, No. 13, Article ID 2150081, 15 p. (2021). MSC: 35B45 35K10 53E20 PDF BibTeX XML Cite \textit{L. Zhang}, Int. J. Math. 32, No. 13, Article ID 2150081, 15 p. (2021; Zbl 1481.35097) Full Text: DOI OpenURL
Dunlap, Alexander; Gu, Yu; Ryzhik, Lenya; Zeitouni, Ofer The random heat equation in dimensions three and higher: the homogenization viewpoint. (English) Zbl 1481.35031 Arch. Ration. Mech. Anal. 242, No. 2, 827-873 (2021). MSC: 35B27 35K05 35K15 35R60 PDF BibTeX XML Cite \textit{A. Dunlap} et al., Arch. Ration. Mech. Anal. 242, No. 2, 827--873 (2021; Zbl 1481.35031) Full Text: DOI arXiv OpenURL
Marrero, Juan Carlos; de Diego, David Martín; Martínez, Eduardo Local convexity for second order differential equations on a Lie algebroid. (English) Zbl 1477.34028 J. Geom. Mech. 13, No. 3, 477-499 (2021). MSC: 34A26 34B15 17B66 22A22 PDF BibTeX XML Cite \textit{J. C. Marrero} et al., J. Geom. Mech. 13, No. 3, 477--499 (2021; Zbl 1477.34028) Full Text: DOI arXiv OpenURL
Yang, Qigui; Xiang, Qiaomin Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. (English) Zbl 1476.34106 Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3267-3284 (2021). MSC: 34C28 35L70 35L05 PDF BibTeX XML Cite \textit{Q. Yang} and \textit{Q. Xiang}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 9, 3267--3284 (2021; Zbl 1476.34106) Full Text: DOI OpenURL
Abdelhedi, Bouthaina; Zaag, Hatem Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. (English) Zbl 1479.35136 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607-2623 (2021). MSC: 35B44 35K15 35K58 35R09 PDF BibTeX XML Cite \textit{B. Abdelhedi} and \textit{H. Zaag}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2607--2623 (2021; Zbl 1479.35136) Full Text: DOI arXiv OpenURL
Lucia, Marcello; Sweers, Guido Nondegeneracy of solutions for a class of cooperative systems on \(\mathbb{R}^n\). (English) Zbl 1481.35173 Commun. Pure Appl. Anal. 20, No. 12, 4177-4193 (2021). MSC: 35J47 35J61 35P99 PDF BibTeX XML Cite \textit{M. Lucia} and \textit{G. Sweers}, Commun. Pure Appl. Anal. 20, No. 12, 4177--4193 (2021; Zbl 1481.35173) Full Text: DOI OpenURL
Ain, Qura Tul; Anjum, Naveed; He, Chun-Hui An analysis of time-fractional heat transfer problem using two-scale approach. (English) Zbl 1480.35386 GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021). MSC: 35R11 35A25 35K15 PDF BibTeX XML Cite \textit{Q. T. Ain} et al., GEM. Int. J. Geomath. 12, Paper No. 18, 10 p. (2021; Zbl 1480.35386) Full Text: DOI OpenURL
Choulli, Mourad The unique continuation property for second order evolution PDEs. (English) Zbl 1480.35080 SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 67, 46 p. (2021). MSC: 35B60 35A23 35J15 35K10 35L10 PDF BibTeX XML Cite \textit{M. Choulli}, SN Partial Differ. Equ. Appl. 2, No. 5, Paper No. 67, 46 p. (2021; Zbl 1480.35080) Full Text: DOI arXiv OpenURL
Kosmakova, M. T.; Ramazanov, M. I.; Kasymova, L. Zh. To solving the heat equation with fractional load. (English) Zbl 1480.35393 Lobachevskii J. Math. 42, No. 12, 2854-2866 (2021). MSC: 35R11 35K20 PDF BibTeX XML Cite \textit{M. T. Kosmakova} et al., Lobachevskii J. Math. 42, No. 12, 2854--2866 (2021; Zbl 1480.35393) Full Text: DOI OpenURL
Sukwong, N.; Sawangtong, W.; Sawangtong, P. The conditions for blow-up and global existence of solution for a degenerate and singular parabolic equation with a non-local source. (English) Zbl 1479.35149 Matematiche 76, No. 1, 19-36 (2021). MSC: 35B44 35K20 35K67 35K65 35R09 PDF BibTeX XML Cite \textit{N. Sukwong} et al., Matematiche 76, No. 1, 19--36 (2021; Zbl 1479.35149) Full Text: DOI OpenURL
Benali, Aharrouch; Jaouad, Bennouna Existence and regularity results for nonlinear and nonhomogeneous elliptic equation. (English) Zbl 1480.35203 J. Elliptic Parabol. Equ. 7, No. 2, 961-975 (2021). MSC: 35J62 35J25 34B45 35A01 35B65 PDF BibTeX XML Cite \textit{A. Benali} and \textit{B. Jaouad}, J. Elliptic Parabol. Equ. 7, No. 2, 961--975 (2021; Zbl 1480.35203) Full Text: DOI OpenURL
Starovoitov, Victor N. Weak solvability of a boundary value problem for a parabolic equation with a global-in-time term that contains a weighted integral. (English) Zbl 1479.35906 J. Elliptic Parabol. Equ. 7, No. 2, 623-634 (2021). MSC: 35R09 35D30 35K20 35K58 35Q92 PDF BibTeX XML Cite \textit{V. N. Starovoitov}, J. Elliptic Parabol. Equ. 7, No. 2, 623--634 (2021; Zbl 1479.35906) Full Text: DOI arXiv OpenURL
Kumar, Kotapally Harish; Jiwari, Ram A note on numerical solution of classical Darboux problem. (English) Zbl 1478.65097 Math. Methods Appl. Sci. 44, No. 17, 12998-13007 (2021). MSC: 65M70 65T60 41A50 35L10 35Q05 PDF BibTeX XML Cite \textit{K. H. Kumar} and \textit{R. Jiwari}, Math. Methods Appl. Sci. 44, No. 17, 12998--13007 (2021; Zbl 1478.65097) Full Text: DOI OpenURL
Yan, Lin Global uniqueness of an inverse problem for stochastic degenerate wave equation with three unknowns. (English) Zbl 1479.35960 Math. Methods Appl. Sci. 44, No. 17, 12545-12558 (2021). MSC: 35R30 35A02 35L20 35R60 60H15 PDF BibTeX XML Cite \textit{L. Yan}, Math. Methods Appl. Sci. 44, No. 17, 12545--12558 (2021; Zbl 1479.35960) Full Text: DOI OpenURL
Charão, Ruy Coimbra; D’Abbicco, Marcello; Ikehata, Ryo Asymptotic profiles for a wave equation with parameter-dependent logarithmic damping. (English) Zbl 1479.35089 Math. Methods Appl. Sci. 44, No. 18, 14003-14024 (2021). MSC: 35B40 35B05 35B45 35C20 35L15 35R09 35S05 PDF BibTeX XML Cite \textit{R. C. Charão} et al., Math. Methods Appl. Sci. 44, No. 18, 14003--14024 (2021; Zbl 1479.35089) Full Text: DOI arXiv OpenURL
Zhuravlev, Nikolai B.; Rossovskii, Leonid E. Spectral radius formula for a parametric family of functional operators. (English) Zbl 1480.35143 Regul. Chaotic Dyn. 26, No. 4, 392-401 (2021). MSC: 35J25 39A13 PDF BibTeX XML Cite \textit{N. B. Zhuravlev} and \textit{L. E. Rossovskii}, Regul. Chaotic Dyn. 26, No. 4, 392--401 (2021; Zbl 1480.35143) Full Text: DOI OpenURL
Ibdah, Hussain Strong solutions to a modified Michelson-Sivashinsky equation. (English) Zbl 1479.35225 Commun. Math. Sci. 19, No. 4, 1071-1100 (2021). MSC: 35D35 35B50 35B65 35K15 35K58 35R11 PDF BibTeX XML Cite \textit{H. Ibdah}, Commun. Math. Sci. 19, No. 4, 1071--1100 (2021; Zbl 1479.35225) Full Text: DOI arXiv OpenURL
Chen, Jingrun; Sun, Zhiwei; Wang, Yun; Yang, Lei A spin-wave solution to the Landau-Lifshitz-Gilbert equation. (English) Zbl 1479.35188 Commun. Math. Sci. 19, No. 1, 193-204 (2021). MSC: 35C07 34E10 35B40 35C20 35K45 35K55 35Q81 PDF BibTeX XML Cite \textit{J. Chen} et al., Commun. Math. Sci. 19, No. 1, 193--204 (2021; Zbl 1479.35188) Full Text: DOI OpenURL
Au, Vo Van; Singh, Jagdev; Nguyen, Anh Tuan Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. (English) Zbl 1478.35218 Electron Res. Arch. 29, No. 6, 3581-3607 (2021). MSC: 35R11 26A33 35K15 35B40 35B44 33E12 44A20 PDF BibTeX XML Cite \textit{V. Van Au} et al., Electron Res. Arch. 29, No. 6, 3581--3607 (2021; Zbl 1478.35218) Full Text: DOI OpenURL
Babich, P. V.; Levenshtam, V. B. Inverse problems in the multidimensional hyperbolic equation with rapidly oscillating absolute term. (English) Zbl 1478.35030 Kusraev, Anatoly G. (ed.) et al., Operator theory and differential equations. Selected papers based on the presentations at the 15th conference on order analysis and related problems of mathematical modeling, Vladikavkaz, Russia, July 15–20, 2019. Cham: Birkhäuser. Trends Math., 7-23 (2021). MSC: 35B40 35R30 35L20 34C29 PDF BibTeX XML Cite \textit{P. V. Babich} and \textit{V. B. Levenshtam}, in: Operator theory and differential equations. Selected papers based on the presentations at the 15th conference on order analysis and related problems of mathematical modeling, Vladikavkaz, Russia, July 15--20, 2019. Cham: Birkhäuser. 7--23 (2021; Zbl 1478.35030) Full Text: DOI arXiv OpenURL
Rahmoune, Abita General decay for a viscoelastic equation with time-varying delay in the boundary feedback condition. (English) Zbl 1479.35114 Math. Mech. Complex Syst. 9, No. 2, 127-142 (2021). MSC: 35B40 35L20 35R09 93D15 PDF BibTeX XML Cite \textit{A. Rahmoune}, Math. Mech. Complex Syst. 9, No. 2, 127--142 (2021; Zbl 1479.35114) Full Text: DOI OpenURL
Brasco, Lorenzo; De Philippis, Guido; Franzina, Giovanni Positive solutions to the sublinear Lane-Emden equation are isolated. (English) Zbl 1482.35150 Commun. Partial Differ. Equations 46, No. 10, 1940-1972 (2021). Reviewer: Vladimir Bobkov (Ufa) MSC: 35P30 35B38 35J25 35J61 35R09 49R05 58E05 PDF BibTeX XML Cite \textit{L. Brasco} et al., Commun. Partial Differ. Equations 46, No. 10, 1940--1972 (2021; Zbl 1482.35150) Full Text: DOI arXiv OpenURL
Zamorano, S. Approximate controllability from the exterior for a nonlocal Sobolev-Galpern type equation. (English) Zbl 1478.35229 Math. Notes 110, No. 4, 609-622 (2021). MSC: 35R11 35B60 35K20 35K70 93B05 PDF BibTeX XML Cite \textit{S. Zamorano}, Math. Notes 110, No. 4, 609--622 (2021; Zbl 1478.35229) Full Text: DOI OpenURL
Dong, Guozhi; Hintermueller, Michael; Zhang, Ye A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging. (English) Zbl 1478.35150 SIAM J. Imaging Sci. 14, No. 2, 645-688 (2021). MSC: 35L72 35L80 49K20 49J52 65M12 PDF BibTeX XML Cite \textit{G. Dong} et al., SIAM J. Imaging Sci. 14, No. 2, 645--688 (2021; Zbl 1478.35150) Full Text: DOI arXiv OpenURL
Bezerra, Flank D. M.; Figueroa-López, Rodiak N.; Nascimento, Marcelo J. D. Fractional oscillon equations; solvability and connection with classical oscillon equations. (English) Zbl 1483.35024 Commun. Pure Appl. Anal. 20, No. 6, 2257-2277 (2021). MSC: 35B40 35B41 34A08 35L20 35L71 35R11 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Commun. Pure Appl. Anal. 20, No. 6, 2257--2277 (2021; Zbl 1483.35024) Full Text: DOI arXiv OpenURL
Chaudru de Raynal, Paul-Eric; Frikha, Noufel From the backward Kolmogorov PDE on the Wasserstein space to propagation of chaos for McKean-Vlasov SDEs. (English. French summary) Zbl 1481.60105 J. Math. Pures Appl. (9) 156, 1-124 (2021). MSC: 60H10 93E03 60H30 35K40 PDF BibTeX XML Cite \textit{P.-E. Chaudru de Raynal} and \textit{N. Frikha}, J. Math. Pures Appl. (9) 156, 1--124 (2021; Zbl 1481.60105) Full Text: DOI arXiv OpenURL
Cetinkaya, Suleyman; Demir, Ali Sequential space fractional diffusion equation’s solutions via new inner product. (English) Zbl 1482.35244 Asian-Eur. J. Math. 14, No. 7, Article ID 2150121, 12 p. (2021). MSC: 35R11 35K20 26A33 65M70 PDF BibTeX XML Cite \textit{S. Cetinkaya} and \textit{A. Demir}, Asian-Eur. J. Math. 14, No. 7, Article ID 2150121, 12 p. (2021; Zbl 1482.35244) Full Text: DOI OpenURL
Nguyen, Thanh-Hieu; Trong, Dang Duc; Vo, Hoang-Hung Spreading of two competing species in advective environment governed by free boundaries with a given moving boundary. (English) Zbl 1477.35031 Vietnam J. Math. 49, No. 4, 1199-1225 (2021). MSC: 35B40 35B50 35K51 35K57 35R35 47G20 PDF BibTeX XML Cite \textit{T.-H. Nguyen} et al., Vietnam J. Math. 49, No. 4, 1199--1225 (2021; Zbl 1477.35031) Full Text: DOI OpenURL
Durdiev, U. D. Problem of determining the reaction coefficient in a fractional diffusion equation. (English. Russian original) Zbl 1477.35311 Differ. Equ. 57, No. 9, 1195-1204 (2021); translation from Differ. Uravn. 57, No. 9, 1220-1229 (2021). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{U. D. Durdiev}, Differ. Equ. 57, No. 9, 1195--1204 (2021; Zbl 1477.35311); translation from Differ. Uravn. 57, No. 9, 1220--1229 (2021) Full Text: DOI OpenURL
Zaitseva, N. V. Classical solutions of hyperbolic equations with nonlocal potentials. (English. Russian original) Zbl 1477.35102 Dokl. Math. 103, No. 3, 127-129 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 37-40 (2021). MSC: 35L10 35A09 35R10 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Dokl. Math. 103, No. 3, 127--129 (2021; Zbl 1477.35102); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 498, 37--40 (2021) Full Text: DOI OpenURL
Denisov, V. N. On stabilization of the Poisson integral and Tikhonov-Stieltjes means: two-sided estimate. (English. Russian original) Zbl 1477.35005 Dokl. Math. 103, No. 1, 32-34 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 40-43 (2021). MSC: 35A23 35K15 PDF BibTeX XML Cite \textit{V. N. Denisov}, Dokl. Math. 103, No. 1, 32--34 (2021; Zbl 1477.35005); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 40--43 (2021) Full Text: DOI OpenURL
Duong, G. K.; Kavallaris, N. I.; Zaag, H. Diffusion-induced blowup solutions for the shadow limit model of a singular Gierer-Meinhardt system. (English) Zbl 1477.35043 Math. Models Methods Appl. Sci. 31, No. 7, 1469-1503 (2021). MSC: 35B44 35B40 35K20 35K58 35R09 PDF BibTeX XML Cite \textit{G. K. Duong} et al., Math. Models Methods Appl. Sci. 31, No. 7, 1469--1503 (2021; Zbl 1477.35043) Full Text: DOI arXiv OpenURL
del Teso, Félix; Endal, Jørgen; Vázquez, Juan Luis The one-phase fractional Stefan problem. (English) Zbl 1473.80010 Math. Models Methods Appl. Sci. 31, No. 1, 83-131 (2021). MSC: 80A22 35D30 35K15 35K65 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{F. del Teso} et al., Math. Models Methods Appl. Sci. 31, No. 1, 83--131 (2021; Zbl 1473.80010) Full Text: DOI arXiv OpenURL
Berger, David; Mohamed, Farid Second order elliptic partial differential equations driven by Lévy white noise. (English) Zbl 1477.60094 Mod. Stoch., Theory Appl. 8, No. 2, 179-207 (2021). Reviewer: Udhayakumar Ramalingam (Vellore) MSC: 60H15 60H40 35J15 35J10 PDF BibTeX XML Cite \textit{D. Berger} and \textit{F. Mohamed}, Mod. Stoch., Theory Appl. 8, No. 2, 179--207 (2021; Zbl 1477.60094) Full Text: DOI arXiv OpenURL
Liu, Songshu; Feng, Lixin; Zhang, Guilai An inverse source problem of space-fractional diffusion equation. (English) Zbl 1476.35333 Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4405-4424 (2021). MSC: 35R30 35K15 35R11 PDF BibTeX XML Cite \textit{S. Liu} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 6, 4405--4424 (2021; Zbl 1476.35333) Full Text: DOI OpenURL
Chen, Wenjing; Rădulescu, Vicenţiu D.; Zhang, Binlin Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential. (English) Zbl 1479.35419 Anal. Math. Phys. 11, No. 3, Paper No. 132, 25 p. (2021). Reviewer: Leszek Gasiński (Kraków) MSC: 35J62 35R11 35A01 35J20 PDF BibTeX XML Cite \textit{W. Chen} et al., Anal. Math. Phys. 11, No. 3, Paper No. 132, 25 p. (2021; Zbl 1479.35419) Full Text: DOI OpenURL
Dier, Dominik; Kassmann, Moritz; Zacher, Rico Discrete versions of the Li-Yau gradient estimate. (English) Zbl 1476.35289 Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 22, No. 2, 691-744 (2021). MSC: 35R02 35B45 35K05 35K10 05C10 05C81 PDF BibTeX XML Cite \textit{D. Dier} et al., Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 22, No. 2, 691--744 (2021; Zbl 1476.35289) Full Text: DOI arXiv OpenURL
Virchenko, Yu. P.; Subbotin, A. V. The class of evolutionary ferrodynamic equations. (English) Zbl 1473.35533 Math. Methods Appl. Sci. 44, No. 15, 11913-11922 (2021). MSC: 35Q60 35K10 PDF BibTeX XML Cite \textit{Yu. P. Virchenko} and \textit{A. V. Subbotin}, Math. Methods Appl. Sci. 44, No. 15, 11913--11922 (2021; Zbl 1473.35533) Full Text: DOI OpenURL
Chen, Wenxiong; Wu, Leyun; Wang, Pengyan Nonexistence of solutions for indefinite fractional parabolic equations. (English) Zbl 1476.35073 Adv. Math. 392, Article ID 108018, 26 p. (2021). MSC: 35B53 35R11 30C80 35K15 35K58 PDF BibTeX XML Cite \textit{W. Chen} et al., Adv. Math. 392, Article ID 108018, 26 p. (2021; Zbl 1476.35073) Full Text: DOI arXiv OpenURL
Bhimani, Divyang G.; Manna, Ramesh; Nicola, Fabio; Thangavelu, Sundaram; Trapasso, S. Ivan Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness. (English) Zbl 1476.35297 Adv. Math. 392, Article ID 107995, 18 p. (2021). MSC: 35R11 35K15 35K58 35S05 42B35 47D06 PDF BibTeX XML Cite \textit{D. G. Bhimani} et al., Adv. Math. 392, Article ID 107995, 18 p. (2021; Zbl 1476.35297) Full Text: DOI arXiv OpenURL
Balanov, Zalman; Burnett, Joseph; Krawcewicz, Wiesław; Xiao, Huafeng Global bifurcation of periodic solutions in symmetric reversible second order systems with delays. (English) Zbl 1480.34094 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 12, Article ID 2150180, 23 p. (2021). MSC: 34K18 34K04 34K13 47N20 PDF BibTeX XML Cite \textit{Z. Balanov} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 12, Article ID 2150180, 23 p. (2021; Zbl 1480.34094) Full Text: DOI OpenURL
Chen, Wenjing; Zhou, Ting Existence of solutions for \(p\)-Laplacian parabolic Kirchhoff equation. (English) Zbl 1476.35129 Appl. Math. Lett. 122, Article ID 107527, 9 p. (2021). MSC: 35K92 35K20 35R09 PDF BibTeX XML Cite \textit{W. Chen} and \textit{T. Zhou}, Appl. Math. Lett. 122, Article ID 107527, 9 p. (2021; Zbl 1476.35129) Full Text: DOI OpenURL
Wang, Lijuan; Yan, Qishu; Yu, Huaiqiang Constrained approximate null controllability of the coupled heat equation with impulse controls. (English) Zbl 1479.35522 SIAM J. Control Optim. 59, No. 5, 3418-3446 (2021). Reviewer: Vyacheslav I. Maksimov (Yekaterinburg) MSC: 35K51 93B05 93C20 35K90 47D06 35R12 PDF BibTeX XML Cite \textit{L. Wang} et al., SIAM J. Control Optim. 59, No. 5, 3418--3446 (2021; Zbl 1479.35522) Full Text: DOI arXiv OpenURL
Hernández-Santamaría, Víctor; Le Balc’h, Kévin Local null-controllability of a nonlocal semilinear heat equation. (English) Zbl 1475.35184 Appl. Math. Optim. 84, No. 2, 1435-1483 (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35K58 93B05 93B07 93C20 35K20 PDF BibTeX XML Cite \textit{V. Hernández-Santamaría} and \textit{K. Le Balc'h}, Appl. Math. Optim. 84, No. 2, 1435--1483 (2021; Zbl 1475.35184) Full Text: DOI arXiv OpenURL
Zheng, Yadong; Fang, Zhong Bo New critical exponents for a doubly singular parabolic equation. (English) Zbl 1475.35188 Appl. Anal. 100, No. 11, 2386-2404 (2021). MSC: 35K67 35B33 35B40 35B44 35K15 35K59 35K65 35R09 PDF BibTeX XML Cite \textit{Y. Zheng} and \textit{Z. B. Fang}, Appl. Anal. 100, No. 11, 2386--2404 (2021; Zbl 1475.35188) Full Text: DOI OpenURL
Rasulov, Karim Magomedovich; Nagornaya, Tat’yana Romanovna The explicit solution of the Neumann boundary value problem for Bauer differential equation in circular domains. (Russian. English summary) Zbl 1476.35106 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 21, No. 3, 326-335 (2021). MSC: 35J25 PDF BibTeX XML Cite \textit{K. M. Rasulov} and \textit{T. R. Nagornaya}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 21, No. 3, 326--335 (2021; Zbl 1476.35106) Full Text: DOI MNR OpenURL
Ren, Caixuan; Huang, Xinchi; Yamamoto, Masahiro Conditional stability for an inverse coefficient problem of a weakly coupled time-fractional diffusion system with half order by Carleman estimate. (English) Zbl 1475.35397 J. Inverse Ill-Posed Probl. 29, No. 5, 635-651 (2021). MSC: 35R11 35R30 35K51 PDF BibTeX XML Cite \textit{C. Ren} et al., J. Inverse Ill-Posed Probl. 29, No. 5, 635--651 (2021; Zbl 1475.35397) Full Text: DOI OpenURL
Maqbul, Md.; Raheem, A. Application of Rothe’s method to some functional differential equations with Dirichlet boundary conditions. (English) Zbl 1476.35291 Differ. Equ. Dyn. Syst. 29, No. 3, 633-643 (2021). MSC: 35R10 35K20 35D35 47D06 PDF BibTeX XML Cite \textit{Md. Maqbul} and \textit{A. Raheem}, Differ. Equ. Dyn. Syst. 29, No. 3, 633--643 (2021; Zbl 1476.35291) Full Text: DOI OpenURL
Gazzola, Filippo; Sperone, Gianmarco Bounds for Sobolev embedding constants in non-simply connected planar domains. (English) Zbl 1473.35012 Ferone, Vincenzo (ed.) et al., Geometric properties for parabolic and elliptic PDE’s. Contributions of the 6th Italian-Japanese workshop, Cortona, Italy, May 20–24, 2019. Cham: Springer. Springer INdAM Ser. 47, 103-125 (2021). MSC: 35A23 35J05 35J25 46E35 PDF BibTeX XML Cite \textit{F. Gazzola} and \textit{G. Sperone}, Springer INdAM Ser. 47, 103--125 (2021; Zbl 1473.35012) Full Text: DOI OpenURL
Oh, Tadahiro; Robert, Tristan; Sosoe, Philippe; Wang, Yuzhao Invariant Gibbs dynamics for the dynamical sine-Gordon model. (English) Zbl 1473.35363 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1450-1466 (2021). MSC: 35L71 35L20 35R60 60H15 PDF BibTeX XML Cite \textit{T. Oh} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 5, 1450--1466 (2021; Zbl 1473.35363) Full Text: DOI arXiv OpenURL
Duprez, Michel; Hélie, Romane; Privat, Yannick; Vauchelet, Nicolas Optimization of spatial control strategies for population replacement, application to Wolbachia. (English) Zbl 1471.92250 ESAIM, Control Optim. Calc. Var. 27, Paper No. 74, 30 p. (2021). MSC: 92D25 92D45 49K15 65K10 PDF BibTeX XML Cite \textit{M. Duprez} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 74, 30 p. (2021; Zbl 1471.92250) Full Text: DOI arXiv OpenURL
Frankowska, Hélène; Lü, Qi Second order necessary conditions for optimal control problems of evolution equations involving final point equality constraints. (English) Zbl 1473.49028 ESAIM, Control Optim. Calc. Var. 27, Paper No. 71, 38 p. (2021). MSC: 49K20 PDF BibTeX XML Cite \textit{H. Frankowska} and \textit{Q. Lü}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 71, 38 p. (2021; Zbl 1473.49028) Full Text: DOI OpenURL
Sadeghi, S.; Jafari, H.; Nemati, S. Solving fractional advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. (English) Zbl 1473.35635 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3747-3761 (2021). MSC: 35R11 35A35 35K15 PDF BibTeX XML Cite \textit{S. Sadeghi} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3747--3761 (2021; Zbl 1473.35635) Full Text: DOI OpenURL
Mashkin, Timur Invariant manifold of modified solitons for the perturbed sine-Gordon equation. (English) Zbl 1479.35746 Nonlinearity 34, No. 10, 6930-6962 (2021). MSC: 35Q53 35L70 35C08 35B20 35A24 35R01 PDF BibTeX XML Cite \textit{T. Mashkin}, Nonlinearity 34, No. 10, 6930--6962 (2021; Zbl 1479.35746) Full Text: DOI OpenURL
Alsaedi, Ahmed; Kirane, Mokhtar; Torebek, Berikbol T. Global existence and blow-up for a space and time nonlocal reaction-diffusion equation. (English) Zbl 1473.35618 Quaest. Math. 44, No. 6, 747-753 (2021). MSC: 35R11 35B44 35B50 26A33 35K20 35K57 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Quaest. Math. 44, No. 6, 747--753 (2021; Zbl 1473.35618) Full Text: DOI arXiv OpenURL
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemí A heat equation with memory: large-time behavior. (English) Zbl 1472.35049 J. Funct. Anal. 281, No. 9, Article ID 109174, 40 p. (2021). MSC: 35B40 35A08 35K15 35R11 PDF BibTeX XML Cite \textit{C. Cortázar} et al., J. Funct. Anal. 281, No. 9, Article ID 109174, 40 p. (2021; Zbl 1472.35049) Full Text: DOI arXiv OpenURL
Tian, Rongrong; Wei, Jinlong; Tang, Yanbin The Dirichlet problem for nonlocal elliptic equations. (English) Zbl 1472.35422 Appl. Anal. 100, No. 10, 2093-2107 (2021). MSC: 35R06 35J25 35R11 35S15 60H15 PDF BibTeX XML Cite \textit{R. Tian} et al., Appl. Anal. 100, No. 10, 2093--2107 (2021; Zbl 1472.35422) Full Text: DOI OpenURL
Chen, Joe P.; Gonçalves, Patrícia Asymptotic behavior of density in the boundary-driven exclusion process on the Sierpinski gasket. (English) Zbl 1472.35208 Math. Phys. Anal. Geom. 24, No. 3, Paper No. 24, 65 p. (2021). MSC: 35K05 35K20 35R60 60H15 60K35 82C22 28A80 60J27 PDF BibTeX XML Cite \textit{J. P. Chen} and \textit{P. Gonçalves}, Math. Phys. Anal. Geom. 24, No. 3, Paper No. 24, 65 p. (2021; Zbl 1472.35208) Full Text: DOI arXiv OpenURL
Carvalho, Alexandre N.; Moreira, Estefani M. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. (English) Zbl 1472.35037 J. Differ. Equations 300, 312-336 (2021). MSC: 35B35 35K20 35K59 35R09 37G35 37D10 47A75 PDF BibTeX XML Cite \textit{A. N. Carvalho} and \textit{E. M. Moreira}, J. Differ. Equations 300, 312--336 (2021; Zbl 1472.35037) Full Text: DOI arXiv OpenURL
Chu, Jianchun; McCleerey, Nicholas \(C^{1,1}\) regularity of geodesics of singular Kähler metrics. (English) Zbl 1482.32022 J. Lond. Math. Soc., II. Ser. 104, No. 1, 66-96 (2021). Reviewer: Rafał Czyż (Krakow) MSC: 32Q15 32W20 53C22 35J25 PDF BibTeX XML Cite \textit{J. Chu} and \textit{N. McCleerey}, J. Lond. Math. Soc., II. Ser. 104, No. 1, 66--96 (2021; Zbl 1482.32022) Full Text: DOI arXiv OpenURL
Fresneda-Portillo, Carlos; Woldemicheal, Zenebe A new family of boundary-domain integral equations for the Dirichlet problem of the diffusion equation in inhomogeneous media with \(H^{-1}(\Omega)\) source term on Lipschitz domains. (English) Zbl 1475.35140 Math. Methods Appl. Sci. 44, No. 12, 9817-9830 (2021). Reviewer: Paolo Musolino (Padova) MSC: 35J25 31B10 45K05 45A05 PDF BibTeX XML Cite \textit{C. Fresneda-Portillo} and \textit{Z. Woldemicheal}, Math. Methods Appl. Sci. 44, No. 12, 9817--9830 (2021; Zbl 1475.35140) Full Text: DOI arXiv OpenURL
Lü, Qi; Zhang, Haisen; Zhang, Xu Second order necessary conditions for optimal control problems of stochastic evolution equations. (English) Zbl 1478.93738 SIAM J. Control Optim. 59, No. 4, 2924-2954 (2021). Reviewer: Hector Jasso (Ciudad de México) MSC: 93E20 60H07 60H15 PDF BibTeX XML Cite \textit{Q. Lü} et al., SIAM J. Control Optim. 59, No. 4, 2924--2954 (2021; Zbl 1478.93738) Full Text: DOI arXiv OpenURL
Frazier, Michael W.; Verbitsky, Igor E. Existence of the gauge for fractional Laplacian Schrödinger operators. (English) Zbl 1472.35434 J. Geom. Anal. 31, No. 9, 9016-9044 (2021). MSC: 35R11 31B35 35B45 35J08 35J05 35J10 35J25 PDF BibTeX XML Cite \textit{M. W. Frazier} and \textit{I. E. Verbitsky}, J. Geom. Anal. 31, No. 9, 9016--9044 (2021; Zbl 1472.35434) Full Text: DOI arXiv OpenURL