Cai, Yongyong; Chen, Jingrun; Wang, Cheng; Xie, Changjian A second-order numerical method for Landau-Lifshitz-Gilbert equation with large damping parameters. (English) Zbl 07517150 J. Comput. Phys. 451, Article ID 110831, 12 p. (2022). MSC: 65Mxx 82Dxx 35Qxx PDF BibTeX XML Cite \textit{Y. Cai} et al., J. Comput. Phys. 451, Article ID 110831, 12 p. (2022; Zbl 07517150) Full Text: DOI OpenURL
Liu, Wenjie; Wu, Boying Unconditional stability and optimal error estimates of a Crank-Nicolson Legendre-Galerkin method for the two-dimensional second-order wave equation. (English) Zbl 07512658 Numer. Algorithms 90, No. 1, 137-158 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{W. Liu} and \textit{B. Wu}, Numer. Algorithms 90, No. 1, 137--158 (2022; Zbl 07512658) Full Text: DOI OpenURL
Amstutz, Samuel; Dapogny, Charles; Ferrer, Alex A consistent approximation of the total perimeter functional for topology optimization algorithms. (English) Zbl 07500007 ESAIM, Control Optim. Calc. Var. 28, Paper No. 18, 71 p. (2022). MSC: 49Q10 49Q12 35J05 35J25 41A60 65K05 PDF BibTeX XML Cite \textit{S. Amstutz} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 18, 71 p. (2022; Zbl 07500007) Full Text: DOI OpenURL
Zakradze, M.; Kublashvili, M.; Tabagari, Z.; Koblishvili, N. On numerical solving the Dirichlet generalized harmonic problem for regular \(n\)-sided pyramidal domains by the probabilistic method. (English) Zbl 07498918 Trans. A. Razmadze Math. Inst. 176, No. 1, 123-132 (2022). MSC: 35J05 35J25 65C30 65N75 PDF BibTeX XML Cite \textit{M. Zakradze} et al., Trans. A. Razmadze Math. Inst. 176, No. 1, 123--132 (2022; Zbl 07498918) Full Text: Link OpenURL
Joly, Patrick; Kachanovska, Maryna Local transparent boundary conditions for wave propagation in fractal trees (II). Error and complexity analysis. (English) Zbl 07498292 SIAM J. Numer. Anal. 60, No. 2, 529-557 (2022). MSC: 65-XX 35R02 35L05 35L20 35P20 34L20 PDF BibTeX XML Cite \textit{P. Joly} and \textit{M. Kachanovska}, SIAM J. Numer. Anal. 60, No. 2, 529--557 (2022; Zbl 07498292) Full Text: DOI OpenURL
Aida-zade, Kamil; Rahimov, Anar On recovering space or time-dependent source functions for a parabolic equation with nonlocal conditions. (English) Zbl 07483682 Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022). MSC: 35R30 35K20 65N40 65N21 65L09 34A55 PDF BibTeX XML Cite \textit{K. Aida-zade} and \textit{A. Rahimov}, Appl. Math. Comput. 419, Article ID 126849, 17 p. (2022; Zbl 07483682) Full Text: DOI OpenURL
Singh, Swarn; Singh, Suruchi; Li, Zhilin A new patch up technique for elliptic partial differential equation with irregularities. (English) Zbl 07474394 J. Comput. Appl. Math. 407, Article ID 113975, 20 p. (2022). MSC: 65N12 35K20 PDF BibTeX XML Cite \textit{S. Singh} et al., J. Comput. Appl. Math. 407, Article ID 113975, 20 p. (2022; Zbl 07474394) Full Text: DOI OpenURL
Baishya, Chandrali A new operational matrix of integration based on the independence polynomial of graph to solve fractional Poisson equation. (English) Zbl 07459022 J. Fract. Calc. Appl. 13, No. 1, 171-188 (2022). MSC: 35J15 65M70 35R11 PDF BibTeX XML Cite \textit{C. Baishya}, J. Fract. Calc. Appl. 13, No. 1, 171--188 (2022; Zbl 07459022) Full Text: Link OpenURL
Yang, Junxiang; Kim, Junseok Numerical simulation and analysis of the Swift-Hohenberg equation by the stabilized Lagrange multiplier approach. (English) Zbl 07453282 Comput. Appl. Math. 41, No. 1, Paper No. 20, 23 p. (2022). MSC: 34D20 37M05 65M06 65N22 PDF BibTeX XML Cite \textit{J. Yang} and \textit{J. Kim}, Comput. Appl. Math. 41, No. 1, Paper No. 20, 23 p. (2022; Zbl 07453282) Full Text: DOI OpenURL
Wei, Ting; Xian, Jun Determining a time-dependent coefficient in a time-fractional diffusion-wave equation with the Caputo derivative by an additional integral condition. (English) Zbl 1479.35957 J. Comput. Appl. Math. 404, Article ID 113910, 22 p. (2022). MSC: 35R30 35L20 35R11 65M32 PDF BibTeX XML Cite \textit{T. Wei} and \textit{J. Xian}, J. Comput. Appl. Math. 404, Article ID 113910, 22 p. (2022; Zbl 1479.35957) Full Text: DOI OpenURL
Misiats, Oleksandr; Stanzhytskyi, Oleksandr; Topaloglu, Ihsan On global existence and blowup of solutions of stochastic Keller-Segel type equation. (English) Zbl 1479.35146 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 3, 29 p. (2022). MSC: 35B44 35K15 35K59 35R60 60H30 65M75 92C17 PDF BibTeX XML Cite \textit{O. Misiats} et al., NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 1, Paper No. 3, 29 p. (2022; Zbl 1479.35146) Full Text: DOI arXiv OpenURL
Qiao, Leijie; Xu, Da; Qiu, Wenlin The formally second-order BDF ADI difference/compact difference scheme for the nonlocal evolution problem in three-dimensional space. (English) Zbl 07441561 Appl. Numer. Math. 172, 359-381 (2022). MSC: 65R20 45K05 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{L. Qiao} et al., Appl. Numer. Math. 172, 359--381 (2022; Zbl 07441561) Full Text: DOI OpenURL
Li, Tingting; Lu, Jianfang; Shu, Chi-Wang Stability analysis of inverse Lax-Wendroff boundary treatment of high order compact difference schemes for parabolic equations. (English) Zbl 1481.65145 J. Comput. Appl. Math. 400, Article ID 113711, 26 p. (2022). MSC: 65M06 65L06 65M20 65N25 65M12 35K10 PDF BibTeX XML Cite \textit{T. Li} et al., J. Comput. Appl. Math. 400, Article ID 113711, 26 p. (2022; Zbl 1481.65145) Full Text: DOI OpenURL
Tiwari, Sudarshan; Klar, Axel; Russo, Giovanni Modelling and simulations of moving droplet in a rarefied gas. (English) Zbl 07524855 Int. J. Comput. Fluid Dyn. 35, No. 8, 666-684 (2021). MSC: 35J15 76D05 76P05 76T10 65C05 65M99 PDF BibTeX XML Cite \textit{S. Tiwari} et al., Int. J. Comput. Fluid Dyn. 35, No. 8, 666--684 (2021; Zbl 07524855) Full Text: DOI OpenURL
Kettunen, Lauri; Lohi, Jonni; Räbinä, Jukka; Mönkölä, Sanna; Rossi, Tuomo Generalized finite difference schemes with higher order Whitney forms. (English) Zbl 07523504 ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1439-1460 (2021). MSC: 65-XX 35L05 35L10 58G16 58G20 58G40 PDF BibTeX XML Cite \textit{L. Kettunen} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1439--1460 (2021; Zbl 07523504) Full Text: DOI OpenURL
Keita, Sana; Beljadid, Abdelaziz; Bourgault, Yves Mass-conservative and positivity preserving second-order semi-implicit methods for high-order parabolic equations. (English) Zbl 07512373 J. Comput. Phys. 440, Article ID 110427, 25 p. (2021). MSC: 35Kxx 65Mxx 35Qxx PDF BibTeX XML Cite \textit{S. Keita} et al., J. Comput. Phys. 440, Article ID 110427, 25 p. (2021; Zbl 07512373) Full Text: DOI OpenURL
Schurz, Henri; Talafha, Abdallah M. Existence, uniqueness, and energy of approximate Fourier solutions of modified stochastic sine-Gordon equation with power-law nonlinearity in 1D. (English) Zbl 07490137 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 126, 22 p. (2021). MSC: 35L20 35R60 60H10 60H15 60H35 65C30 70K20 74J30 PDF BibTeX XML Cite \textit{H. Schurz} and \textit{A. M. Talafha}, Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 126, 22 p. (2021; Zbl 07490137) Full Text: DOI OpenURL
Ashry, Heba; Abd-Elhameed, W. M.; Moatimid, G. M.; Youssri, Y. H. Spectral treatment of one and two dimensional second-order BVPs via certain modified shifted Chebyshev polynomials. (English) Zbl 07489871 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 248, 21 p. (2021). MSC: 65M70 33C45 34A30 42A10 PDF BibTeX XML Cite \textit{H. Ashry} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 248, 21 p. (2021; Zbl 07489871) Full Text: DOI OpenURL
V. Sugathan, Aswin; Awasthi, Ashish Systematic formulation of a general numerical framework for solving the two-dimensional convection-diffusion-reaction system. (English) Zbl 07486827 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7-8, 843-859 (2021). MSC: 65Y20 65N06 65D32 35K20 PDF BibTeX XML Cite \textit{A. V. Sugathan} and \textit{A. Awasthi}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7--8, 843--859 (2021; Zbl 07486827) Full Text: DOI OpenURL
Kian, Yavar; Soccorsi, Éric; Xue, Qi; Yamamoto, Masahiro Identification of time-varying source term in time-fractional diffusion equations. (English) Zbl 1483.35342 Commun. Math. Sci. 20, No. 1, 53-84 (2021). MSC: 35R30 35A02 35K20 35R11 65M32 PDF BibTeX XML Cite \textit{Y. Kian} et al., Commun. Math. Sci. 20, No. 1, 53--84 (2021; Zbl 1483.35342) Full Text: DOI arXiv OpenURL
Kumar, Kotapally Harish; Jiwari, Ram A note on numerical solution of classical Darboux problem. (English) Zbl 1478.65097 Math. Methods Appl. Sci. 44, No. 17, 12998-13007 (2021). MSC: 65M70 65T60 41A50 35L10 35Q05 PDF BibTeX XML Cite \textit{K. H. Kumar} and \textit{R. Jiwari}, Math. Methods Appl. Sci. 44, No. 17, 12998--13007 (2021; Zbl 1478.65097) Full Text: DOI OpenURL
Dong, Guozhi; Hintermueller, Michael; Zhang, Ye A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging. (English) Zbl 1478.35150 SIAM J. Imaging Sci. 14, No. 2, 645-688 (2021). MSC: 35L72 35L80 49K20 49J52 65M12 PDF BibTeX XML Cite \textit{G. Dong} et al., SIAM J. Imaging Sci. 14, No. 2, 645--688 (2021; Zbl 1478.35150) Full Text: DOI arXiv OpenURL
Lin, Fu-Rong; Qu, Hai-Dong; She, Zi-Hang DNT preconditioner for one-sided space fractional diffusion equations. (English) Zbl 07430396 BIT 61, No. 4, 1311-1335 (2021). MSC: 65Mxx 65F08 65F10 65M22 PDF BibTeX XML Cite \textit{F.-R. Lin} et al., BIT 61, No. 4, 1311--1335 (2021; Zbl 07430396) Full Text: DOI OpenURL
Cetinkaya, Suleyman; Demir, Ali Sequential space fractional diffusion equation’s solutions via new inner product. (English) Zbl 1482.35244 Asian-Eur. J. Math. 14, No. 7, Article ID 2150121, 12 p. (2021). MSC: 35R11 35K20 26A33 65M70 PDF BibTeX XML Cite \textit{S. Cetinkaya} and \textit{A. Demir}, Asian-Eur. J. Math. 14, No. 7, Article ID 2150121, 12 p. (2021; Zbl 1482.35244) Full Text: DOI OpenURL
Yaslan, H. Çerdik Numerical solution of the nonlinear conformable space-time fractional partial differential equations. (English) Zbl 07423837 Indian J. Pure Appl. Math. 52, No. 2, 407-419 (2021). MSC: 65-XX 35G31 35R11 65M70 PDF BibTeX XML Cite \textit{H. Ç. Yaslan}, Indian J. Pure Appl. Math. 52, No. 2, 407--419 (2021; Zbl 07423837) Full Text: DOI OpenURL
del Teso, Félix; Endal, Jørgen; Vázquez, Juan Luis The one-phase fractional Stefan problem. (English) Zbl 1473.80010 Math. Models Methods Appl. Sci. 31, No. 1, 83-131 (2021). MSC: 80A22 35D30 35K15 35K65 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{F. del Teso} et al., Math. Models Methods Appl. Sci. 31, No. 1, 83--131 (2021; Zbl 1473.80010) Full Text: DOI arXiv OpenURL
Qiao, Leijie; Xu, Da A fast ADI orthogonal spline collocation method with graded meshes for the two-dimensional fractional integro-differential equation. (English) Zbl 07400546 Adv. Comput. Math. 47, No. 5, Paper No. 64, 22 p. (2021). MSC: 65-XX 35R11 45E10 65M70 65M15 PDF BibTeX XML Cite \textit{L. Qiao} and \textit{D. Xu}, Adv. Comput. Math. 47, No. 5, Paper No. 64, 22 p. (2021; Zbl 07400546) Full Text: DOI OpenURL
Duprez, Michel; Hélie, Romane; Privat, Yannick; Vauchelet, Nicolas Optimization of spatial control strategies for population replacement, application to Wolbachia. (English) Zbl 1471.92250 ESAIM, Control Optim. Calc. Var. 27, Paper No. 74, 30 p. (2021). MSC: 92D25 92D45 49K15 65K10 PDF BibTeX XML Cite \textit{M. Duprez} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 74, 30 p. (2021; Zbl 1471.92250) Full Text: DOI arXiv OpenURL
Zureigat, Hamzeh; Ismail, Ahmad Izani; Sathasivam, Saratha Numerical solutions of fuzzy time fractional advection-diffusion equations in double parametric form of fuzzy number. (English) Zbl 1473.65133 Math. Methods Appl. Sci. 44, No. 10, 7956-7968 (2021). Reviewer: Abdallah Bradji (Annaba) MSC: 65M06 65M22 35K15 26A33 35R11 35R13 PDF BibTeX XML Cite \textit{H. Zureigat} et al., Math. Methods Appl. Sci. 44, No. 10, 7956--7968 (2021; Zbl 1473.65133) Full Text: DOI OpenURL
Vinothkumar, C.; Deiveegan, A.; Nieto, J. J.; Prakash, P. Similarity solutions of fractional parabolic boundary value problems with uncertainty. (English) Zbl 1471.35318 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105926, 11 p. (2021). MSC: 35R13 35K20 65M06 PDF BibTeX XML Cite \textit{C. Vinothkumar} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105926, 11 p. (2021; Zbl 1471.35318) Full Text: DOI OpenURL
Sekine, Kouta; Nakao, Mitsuhiro T.; Oishi, Shin’ichi; Kashiwagi, Masahide A numerical proof algorithm for the non-existence of solutions to elliptic boundary value problems. (English) Zbl 1479.65038 Appl. Numer. Math. 169, 87-107 (2021). MSC: 65N99 35J25 35J05 68V05 47H10 PDF BibTeX XML Cite \textit{K. Sekine} et al., Appl. Numer. Math. 169, 87--107 (2021; Zbl 1479.65038) Full Text: DOI OpenURL
Bao, Ngoc Tran; Hoang, Luc Nguyen; Van, Au Vo; Nguyen, Huy Tuan; Zhou, Yong Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations. (English) Zbl 1472.35448 Math. Methods Appl. Sci. 44, No. 3, 2532-2558 (2021). MSC: 35R30 26A33 35R11 35K20 65J22 76A05 PDF BibTeX XML Cite \textit{N. T. Bao} et al., Math. Methods Appl. Sci. 44, No. 3, 2532--2558 (2021; Zbl 1472.35448) Full Text: DOI OpenURL
Huntul, M. J.; Tamsir, Mohammad Recovery of timewise-dependent heat source for hyperbolic PDE from an integral condition. (English) Zbl 07376619 Math. Methods Appl. Sci. 44, No. 2, 1470-1483 (2021). MSC: 65M32 65M30 65K10 65J20 35L20 35R30 35R25 35R60 PDF BibTeX XML Cite \textit{M. J. Huntul} and \textit{M. Tamsir}, Math. Methods Appl. Sci. 44, No. 2, 1470--1483 (2021; Zbl 07376619) Full Text: DOI OpenURL
BenSalah, Mohamed; Hassine, Maatoug Inverse source problem for a diffusion equation involving the fractional spectral Laplacian. (English) Zbl 1469.35247 Math. Methods Appl. Sci. 44, No. 1, 917-936 (2021). MSC: 35R30 35J25 35R11 65M32 65F10 65F22 PDF BibTeX XML Cite \textit{M. BenSalah} and \textit{M. Hassine}, Math. Methods Appl. Sci. 44, No. 1, 917--936 (2021; Zbl 1469.35247) Full Text: DOI OpenURL
Mesgarani, H.; Beiranvand, A.; Esmaeelzade Aghdam, Y. The impact of the Chebyshev collocation method on solutions of the time-fractional Black-Scholes. (English) Zbl 1473.91032 Math. Sci., Springer 15, No. 2, 137-143 (2021). MSC: 91G60 65M70 35R11 PDF BibTeX XML Cite \textit{H. Mesgarani} et al., Math. Sci., Springer 15, No. 2, 137--143 (2021; Zbl 1473.91032) Full Text: DOI OpenURL
Christof, Constantin; Vexler, Boris New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints. (English) Zbl 1473.35609 ESAIM, Control Optim. Calc. Var. 27, Paper No. 4, 39 p. (2021). MSC: 35Q93 35K10 35B65 49K20 49M41 65M60 65M15 PDF BibTeX XML Cite \textit{C. Christof} and \textit{B. Vexler}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 4, 39 p. (2021; Zbl 1473.35609) Full Text: DOI OpenURL
Laurent, Philippe; Legendre, Guillaume; Salomon, Julien On the method of reflections. (English) Zbl 1478.65140 Numer. Math. 148, No. 2, 449-493 (2021). MSC: 65N55 65N99 65F10 35J05 35J57 76D07 78A30 PDF BibTeX XML Cite \textit{P. Laurent} et al., Numer. Math. 148, No. 2, 449--493 (2021; Zbl 1478.65140) Full Text: DOI arXiv OpenURL
Bokanowski, Olivier; Picarelli, Athena; Reisinger, Christoph Stability and convergence of second order backward differentiation schemes for parabolic Hamilton-Jacobi-Bellman equations. (English) Zbl 1480.65204 Numer. Math. 148, No. 1, 187-222 (2021). MSC: 65M06 65M12 49L12 35K45 35B65 PDF BibTeX XML Cite \textit{O. Bokanowski} et al., Numer. Math. 148, No. 1, 187--222 (2021; Zbl 1480.65204) Full Text: DOI arXiv OpenURL
Jornet, Marc Uncertainty quantification for the random viscous Burgers’ partial differential equation by using the differential transform method. (English) Zbl 1466.35378 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 209, Article ID 112340, 13 p. (2021). MSC: 35R60 35K15 35K58 60H35 65C30 PDF BibTeX XML Cite \textit{M. Jornet}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 209, Article ID 112340, 13 p. (2021; Zbl 1466.35378) Full Text: DOI OpenURL
Zheng, Xiangcheng; Wang, Hong A hidden-memory variable-order time-fractional optimal control model: analysis and approximation. (English) Zbl 1466.49025 SIAM J. Control Optim. 59, No. 3, 1851-1880 (2021). MSC: 49K40 26A33 35K20 49K20 65M12 65M60 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, SIAM J. Control Optim. 59, No. 3, 1851--1880 (2021; Zbl 1466.49025) Full Text: DOI OpenURL
Furati, Khaled M.; Mustapha, Kassem; Sarumi, Ibrahim O.; Iyiola, Olaniyi S. Inverse source in two-parameter anomalous diffusion, numerical algorithms, and simulations over graded time meshes. (English) Zbl 1465.35392 Comput. Appl. Math. 40, No. 1, Paper No. 25, 22 p. (2021). MSC: 35R11 35R30 35K20 65M32 PDF BibTeX XML Cite \textit{K. M. Furati} et al., Comput. Appl. Math. 40, No. 1, Paper No. 25, 22 p. (2021; Zbl 1465.35392) Full Text: DOI arXiv OpenURL
Deng, Da-Wen; Ngai, Sze-Man Estimates for sums and gaps of eigenvalues of Laplacians on measure spaces. (English) Zbl 1462.35218 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 2, 842-861 (2021). MSC: 35P15 28A80 35J05 35J25 34L16 65L15 65L60 PDF BibTeX XML Cite \textit{D.-W. Deng} and \textit{S.-M. Ngai}, Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 2, 842--861 (2021; Zbl 1462.35218) Full Text: DOI OpenURL
Li, Shuangshuang; Wang, Lina; Yi, Lijun An \(hp\)-version of \(C^0\)-continuous Petrov-Galerkin time-stepping method for second-order Volterra integro-differential equations with weakly singular kernels. (English) Zbl 1461.65269 East Asian J. Appl. Math. 11, No. 1, 20-42 (2021). MSC: 65R20 65M60 65M15 45D05 45K05 PDF BibTeX XML Cite \textit{S. Li} et al., East Asian J. Appl. Math. 11, No. 1, 20--42 (2021; Zbl 1461.65269) Full Text: DOI OpenURL
Du, Hong; Chen, Zhong; Yang, Tiejun A meshless method in reproducing kernel space for solving variable-order time fractional advection-diffusion equations on arbitrary domain. (English) Zbl 1468.65172 Appl. Math. Lett. 116, Article ID 107014, 7 p. (2021). MSC: 65M99 35K10 35R11 PDF BibTeX XML Cite \textit{H. Du} et al., Appl. Math. Lett. 116, Article ID 107014, 7 p. (2021; Zbl 1468.65172) Full Text: DOI OpenURL
Ramesh, V. P.; Priyanga, B. Higher order uniformly convergent numerical algorithm for time-dependent singularly perturbed differential-difference equations. (English) Zbl 1468.65109 Differ. Equ. Dyn. Syst. 29, No. 1, 239-263 (2021). MSC: 65M06 65N06 65M12 35K20 35K67 35B45 35R07 PDF BibTeX XML Cite \textit{V. P. Ramesh} and \textit{B. Priyanga}, Differ. Equ. Dyn. Syst. 29, No. 1, 239--263 (2021; Zbl 1468.65109) Full Text: DOI OpenURL
Wang, Jun-Ya; Huang, Qiong-Ao A family of effective structure-preserving schemes with second-order accuracy for the undamped sine-Gordon equation. (English) Zbl 07336196 Comput. Math. Appl. 90, 38-45 (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{J.-Y. Wang} and \textit{Q.-A. Huang}, Comput. Math. Appl. 90, 38--45 (2021; Zbl 07336196) Full Text: DOI OpenURL
Sun, L. L.; Li, Y. S.; Zhang, Y. Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation. (English) Zbl 1462.35469 Inverse Probl. 37, No. 5, Article ID 055007, 26 p. (2021). MSC: 35R30 35R11 35K20 65M32 26A33 PDF BibTeX XML Cite \textit{L. L. Sun} et al., Inverse Probl. 37, No. 5, Article ID 055007, 26 p. (2021; Zbl 1462.35469) Full Text: DOI OpenURL
Jiang, Su Zhen; Wu, Yu Jiang Recovering a time-dependent potential function in a multi-term time fractional diffusion equation by using a nonlinear condition. (English) Zbl 1460.35390 J. Inverse Ill-Posed Probl. 29, No. 2, 233-248 (2021). MSC: 35R30 35R11 35R25 35K20 65M32 PDF BibTeX XML Cite \textit{S. Z. Jiang} and \textit{Y. J. Wu}, J. Inverse Ill-Posed Probl. 29, No. 2, 233--248 (2021; Zbl 1460.35390) Full Text: DOI OpenURL
Tang, H. S.; Li, L.; Grossberg, M.; Liu, Y. J.; Jia, Y. M.; Li, S. S.; Dong, W. B. An exploratory study on machine learning to couple numerical solutions of partial differential equations. (English) Zbl 1462.65217 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N55 65N06 68T07 35J05 35K20 PDF BibTeX XML Cite \textit{H. S. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021; Zbl 1462.65217) Full Text: DOI arXiv OpenURL
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift. (English) Zbl 1475.35432 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). Reviewer: Robert Plato (Siegen) MSC: 35R60 26A33 35A01 35A02 35R11 35R30 35R25 49M37 60G60 60H40 60J65 65M30 65M32 65T50 90C25 35K20 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 1475.35432) Full Text: DOI arXiv OpenURL
Vabishchevich, P. N. An approximate representation of a solution to fractional elliptical BVP via solution of parabolic IVP. (English) Zbl 1466.65166 J. Comput. Appl. Math. 391, Article ID 113460, 13 p. (2021). MSC: 65N06 35J25 35R11 65F60 65D32 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 391, Article ID 113460, 13 p. (2021; Zbl 1466.65166) Full Text: DOI arXiv OpenURL
Huang, Weizhang; Kamenski, Lennard; Lang, Jens Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. (English) Zbl 1456.65114 J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021). MSC: 65M60 65M06 65L06 65N30 65M50 65F08 65F10 65F35 65F15 35K10 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021; Zbl 1456.65114) Full Text: DOI arXiv OpenURL
Maia, L. A.; Raom, D.; Ruviaro, R.; Sobral, Y. D. Mini-max algorithm via Pohozaev manifold. (English) Zbl 1459.35114 Nonlinearity 34, No. 1, 642-668 (2021). MSC: 35J20 35J91 65N99 65N22 PDF BibTeX XML Cite \textit{L. A. Maia} et al., Nonlinearity 34, No. 1, 642--668 (2021; Zbl 1459.35114) Full Text: DOI arXiv OpenURL
Chen, Hongbin; Xu, Da; Cao, Jiliang; Zhou, Jun A formally second order BDF ADI difference scheme for the three-dimensional time-fractional heat equation. (English) Zbl 1480.65207 Int. J. Comput. Math. 97, No. 5, 1100-1117 (2020). MSC: 65M06 35R11 45K05 65D32 PDF BibTeX XML Cite \textit{H. Chen} et al., Int. J. Comput. Math. 97, No. 5, 1100--1117 (2020; Zbl 1480.65207) Full Text: DOI OpenURL
Chen, Y.; Chen, Chang-Ming Novel numerical method of the fractional cable equation. (English) Zbl 07435276 J. Appl. Math. Comput. 62, No. 1-2, 663-683 (2020). MSC: 65Mxx 26A33 65M06 65M12 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{C.-M. Chen}, J. Appl. Math. Comput. 62, No. 1--2, 663--683 (2020; Zbl 07435276) Full Text: DOI OpenURL
Kumar, Devendra; Kumari, Parvin A parameter-uniform collocation scheme for singularly perturbed delay problems with integral boundary condition. (English) Zbl 07435120 J. Appl. Math. Comput. 63, No. 1-2, 813-828 (2020). MSC: 65-XX 35K20 65L10 65L11 65L70 65M12 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{P. Kumari}, J. Appl. Math. Comput. 63, No. 1--2, 813--828 (2020; Zbl 07435120) Full Text: DOI OpenURL
Zhang, Min; Liu, Yang; Li, Hong High-order local discontinuous Galerkin algorithm with time second-order schemes for the two-dimensional nonlinear fractional diffusion equation. (English) Zbl 1476.65261 Commun. Appl. Math. Comput. 2, No. 4, 613-640 (2020). MSC: 65M60 35R11 65M12 PDF BibTeX XML Cite \textit{M. Zhang} et al., Commun. Appl. Math. Comput. 2, No. 4, 613--640 (2020; Zbl 1476.65261) Full Text: DOI OpenURL
Wang, Fengru; Yang, Jerry Zhijian; Yuan, Cheng Practical absorbing boundary conditions for wave propagation on arbitrary domain. (English) Zbl 07409080 Adv. Appl. Math. Mech. 12, No. 6, 1384-1415 (2020). MSC: 35L15 62J07 35L05 35L20 65M99 PDF BibTeX XML Cite \textit{F. Wang} et al., Adv. Appl. Math. Mech. 12, No. 6, 1384--1415 (2020; Zbl 07409080) Full Text: DOI OpenURL
Ashyralyev, A.; Agirseven, D.; Agarwal, R. P. Stability estimates for delay parabolic differential and difference equations. (English) Zbl 1473.35617 Appl. Comput. Math. 19, No. 2, 175-204 (2020). MSC: 35R10 35K20 65M06 PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., Appl. Comput. Math. 19, No. 2, 175--204 (2020; Zbl 1473.35617) Full Text: Link OpenURL
Shokri, Ali; Bahmani, Erfan Numerical solution of the 2D telegraph equation using direct meshless local Petrov-Galerkin (DMLPG) method. (Persian. English summary) Zbl 07389525 JAMM, J. Adv. Math. Model. 10, No. 2, 267-287 (2020). MSC: 65-XX 35L10 65M99 PDF BibTeX XML Cite \textit{A. Shokri} and \textit{E. Bahmani}, JAMM, J. Adv. Math. Model. 10, No. 2, 267--287 (2020; Zbl 07389525) Full Text: DOI OpenURL
Feng, Xiaoli; Li, Peijun; Wang, Xu An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion. (English) Zbl 1469.35251 Inverse Probl. 36, No. 4, Article ID 045008, 30 p. (2020). MSC: 35R30 35K20 35R11 35R60 65M32 PDF BibTeX XML Cite \textit{X. Feng} et al., Inverse Probl. 36, No. 4, Article ID 045008, 30 p. (2020; Zbl 1469.35251) Full Text: DOI arXiv OpenURL
Li, Zhaoxing; Deng, Zhiliang A total variation regularization method for an inverse problem of recovering an unknown diffusion coefficient in a parabolic equation. (English) Zbl 1475.65108 Inverse Probl. Sci. Eng. 28, No. 10, 1453-1473 (2020). MSC: 65M32 65M30 65H10 35B45 35A02 35B35 60H50 49J20 35K20 35R30 35R25 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Z. Deng}, Inverse Probl. Sci. Eng. 28, No. 10, 1453--1473 (2020; Zbl 1475.65108) Full Text: DOI OpenURL
de Carvalho, Pitágoras Pinheiro; Fernández-Cara, Enrique; Ferrel, Juan Bautista Límaco On the computation of Nash and Pareto equilibria for some bi-objective control problems for the wave equation. (English) Zbl 1464.35010 Adv. Comput. Math. 46, No. 5, Paper No. 73, 30 p. (2020). MSC: 35A35 35L20 35Q93 49J20 90C29 65M06 65M60 PDF BibTeX XML Cite \textit{P. P. de Carvalho} et al., Adv. Comput. Math. 46, No. 5, Paper No. 73, 30 p. (2020; Zbl 1464.35010) Full Text: DOI OpenURL
Li, Jingwei; Gao, Zhiming; Feng, Xinlong; He, Yinnian Method of order reduction for the high-dimensional convection-diffusion-reaction equation with Robin boundary conditions based on MQ RBF-FD. (English) Zbl 07336590 Int. J. Comput. Methods 17, No. 8, Article ID 1950058, 22 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Comput. Methods 17, No. 8, Article ID 1950058, 22 p. (2020; Zbl 07336590) Full Text: DOI OpenURL
Egger, Herbert; Kugler, Thomas; Liljegren-Sailer, Björn Stability preserving approximations of a semilinear hyperbolic gas transport model. (English) Zbl 1466.65129 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS). AIMS Ser. Appl. Math. 10, 427-433 (2020). MSC: 65M60 65M22 35L71 35L05 35A01 35A02 35R02 PDF BibTeX XML Cite \textit{H. Egger} et al., AIMS Ser. Appl. Math. 10, 427--433 (2020; Zbl 1466.65129) Full Text: arXiv OpenURL
Kaushik, Aditya; Sharma, Nitika An adaptive difference scheme for parabolic delay differential equation with discontinuous coefficients and interior layers. (English) Zbl 1466.65065 J. Difference Equ. Appl. 26, No. 11-12, 1450-1470 (2020). MSC: 65M06 65M12 65M50 35B25 35K15 35R07 PDF BibTeX XML Cite \textit{A. Kaushik} and \textit{N. Sharma}, J. Difference Equ. Appl. 26, No. 11--12, 1450--1470 (2020; Zbl 1466.65065) Full Text: DOI OpenURL
Dohnal, Tomáš; Rudolf, Daniel NLS approximation for wavepackets in periodic cubically nonlinear wave problems in \(\mathbb{R}^d\). (English) Zbl 1459.35342 Appl. Anal. 99, No. 10, 1685-1723 (2020). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q60 35L71 41A60 35C08 65N25 65N06 65L06 65T50 PDF BibTeX XML Cite \textit{T. Dohnal} and \textit{D. Rudolf}, Appl. Anal. 99, No. 10, 1685--1723 (2020; Zbl 1459.35342) Full Text: DOI arXiv OpenURL
Ciesielski, M.; Mochnacki, B.; Majchrzak, E. Integro-differential form of the first-order dual phase lag heat transfer equation and its numerical solution using the control volume method. (English) Zbl 1464.80001 Arch. Mech. 72, No. 5, 415-444 (2020). MSC: 80A19 35K10 80M12 65M08 35R09 46K05 PDF BibTeX XML Cite \textit{M. Ciesielski} et al., Arch. Mech. 72, No. 5, 415--444 (2020; Zbl 1464.80001) Full Text: DOI OpenURL
Liu, Lishan; Sun, Fenglong; Wu, Yonghong Finite time blow-up for a nonlinear viscoelastic Petrovsky equation with high initial energy. (English) Zbl 1460.35232 SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 31, 18 p. (2020). Reviewer: Igor Bock (Bratislava) MSC: 35L70 65M60 35B44 35R09 35L35 PDF BibTeX XML Cite \textit{L. Liu} et al., SN Partial Differ. Equ. Appl. 1, No. 5, Paper No. 31, 18 p. (2020; Zbl 1460.35232) Full Text: DOI OpenURL
Lui, S. H.; Nataj, Sarah Chebyshev spectral collocation in space and time for the heat equation. (English) Zbl 1446.65130 ETNA, Electron. Trans. Numer. Anal. 52, 295-319 (2020). MSC: 65M70 65L05 35K20 35L20 41A10 PDF BibTeX XML Cite \textit{S. H. Lui} and \textit{S. Nataj}, ETNA, Electron. Trans. Numer. Anal. 52, 295--319 (2020; Zbl 1446.65130) Full Text: DOI Link OpenURL
Martínez, Romeo; Macías-Díaz, J. E.; Hendy, A. S. Corrigendum to: “A numerically efficient and conservative model for a Riesz space-fractional Klein-Gordon-Zakharov system”. (English) Zbl 1470.65152 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020). MSC: 65M06 35R11 35L53 35L70 PDF BibTeX XML Cite \textit{R. Martínez} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105109, 4 p. (2020; Zbl 1470.65152) Full Text: DOI OpenURL
Zlotnik, A. A.; Zlotnik, I. A. Fast Fourier solvers for the tensor product high-order FEM for a Poisson type equation. (English) Zbl 1452.65366 Comput. Math. Math. Phys. 60, No. 2, 240-257 (2020) and Zh. Vychisl. Mat. Mat. Fiz. 60, No. 2, 234-252 (2020). MSC: 65N30 65N25 65T50 65D32 65J15 35J25 34B09 34L10 PDF BibTeX XML Cite \textit{A. A. Zlotnik} and \textit{I. A. Zlotnik}, Comput. Math. Math. Phys. 60, No. 2, 240--257 (2020; Zbl 1452.65366) Full Text: DOI arXiv OpenURL
Kumar, P. Murali Mohan; Ravi Kanth, A. S. V. Computational study for a class of time-dependent singularly perturbed parabolic partial differential equation through tension spline. (English) Zbl 1463.65227 Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020). MSC: 65M06 65M12 35K20 35B25 65D07 35B45 35B50 35R07 PDF BibTeX XML Cite \textit{P. M. M. Kumar} and \textit{A. S. V. Ravi Kanth}, Comput. Appl. Math. 39, No. 3, Paper No. 233, 19 p. (2020; Zbl 1463.65227) Full Text: DOI OpenURL
Reutskiy, Sergiy; Lin, Ji A RBF-based technique for 3D convection-diffusion-reaction problems in an anisotropic inhomogeneous medium. (English) Zbl 1443.65392 Comput. Math. Appl. 79, No. 6, 1875-1888 (2020). MSC: 65N35 65D12 35C10 35J25 PDF BibTeX XML Cite \textit{S. Reutskiy} and \textit{J. Lin}, Comput. Math. Appl. 79, No. 6, 1875--1888 (2020; Zbl 1443.65392) Full Text: DOI OpenURL
Zheng, Xiangcheng; Wang, Hong An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. (English) Zbl 1450.65135 SIAM J. Numer. Anal. 58, No. 5, 2492-2514 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65M70 65M15 35S10 35K20 35R11 26A33 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, SIAM J. Numer. Anal. 58, No. 5, 2492--2514 (2020; Zbl 1450.65135) Full Text: DOI OpenURL
Dhayal, Rajesh; Malik, Muslim; Abbas, Syed; Debbouche, Amar Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses. (English) Zbl 1448.49034 Math. Methods Appl. Sci. 43, No. 7, 4107-4124 (2020). Reviewer: Hector Jasso (Ciudad de México) MSC: 49K45 49N25 37L55 47D09 65C30 60G22 PDF BibTeX XML Cite \textit{R. Dhayal} et al., Math. Methods Appl. Sci. 43, No. 7, 4107--4124 (2020; Zbl 1448.49034) Full Text: DOI OpenURL
Galanin, M. P.; Sorokin, D. L. Solving exterior boundary value problems for the Laplace equation. (English. Russian original) Zbl 1455.65225 Differ. Equ. 56, No. 7, 890-899 (2020); translation from Differ. Uravn. 56, No. 7, 918-926 (2020). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65N85 65N80 26B20 65N06 35R09 35J05 35J15 PDF BibTeX XML Cite \textit{M. P. Galanin} and \textit{D. L. Sorokin}, Differ. Equ. 56, No. 7, 890--899 (2020; Zbl 1455.65225); translation from Differ. Uravn. 56, No. 7, 918--926 (2020) Full Text: DOI OpenURL
Roul, Pradip; Rohil, Vikas; Espinosa-Paredes, Gilberto; Prasad Goura, V. M. K.; Gedam, R. S.; Obaidurrahman, K. Design and analysis of a numerical method for fractional neutron diffusion equation with delayed neutrons. (English) Zbl 1446.65117 Appl. Numer. Math. 157, 634-653 (2020). MSC: 65M60 65N06 65M12 35R11 26A33 82D75 35Q82 35R07 35K10 PDF BibTeX XML Cite \textit{P. Roul} et al., Appl. Numer. Math. 157, 634--653 (2020; Zbl 1446.65117) Full Text: DOI OpenURL
Khalilov, E. H. Justification of the collocation method for a class of surface integral equations. (English. Russian original) Zbl 1442.35081 Math. Notes 107, No. 4, 663-678 (2020); translation from Mat. Zametki 107, No. 4, 604-622 (2020). MSC: 35J05 35J25 65L60 PDF BibTeX XML Cite \textit{E. H. Khalilov}, Math. Notes 107, No. 4, 663--678 (2020; Zbl 1442.35081); translation from Mat. Zametki 107, No. 4, 604--622 (2020) Full Text: DOI OpenURL
Fazeli, S.; Hojjati, G. Second derivative two-step collocation methods for ordinary differential equations. (English) Zbl 1453.65192 Appl. Numer. Math. 156, 514-527 (2020). MSC: 65L60 65L20 PDF BibTeX XML Cite \textit{S. Fazeli} and \textit{G. Hojjati}, Appl. Numer. Math. 156, 514--527 (2020; Zbl 1453.65192) Full Text: DOI OpenURL
Esmaili, Sakine; Nasresfahani, Farzaneh; Eslahchi, Mohammad Reza Solving a fractional parabolic-hyperbolic free boundary problem which models the growth of tumor with drug application using finite difference-spectral method. (English) Zbl 1434.92008 Chaos Solitons Fractals 132, Article ID 109538, 17 p. (2020). MSC: 92-08 65M70 65M12 35K20 35R11 92C50 PDF BibTeX XML Cite \textit{S. Esmaili} et al., Chaos Solitons Fractals 132, Article ID 109538, 17 p. (2020; Zbl 1434.92008) Full Text: DOI arXiv OpenURL
Barrenechea, Gabriel R.; Jaillet, Fabrice; Paredes, Diego; Valentin, Frédéric The multiscale hybrid mixed method in general polygonal meshes. (English) Zbl 1440.65177 Numer. Math. 145, No. 1, 197-237 (2020). MSC: 65N30 65N12 65N55 35J15 35R09 PDF BibTeX XML Cite \textit{G. R. Barrenechea} et al., Numer. Math. 145, No. 1, 197--237 (2020; Zbl 1440.65177) Full Text: DOI Link OpenURL
del Teso, Félix; Endal, Jørgen; Vázquez, Juan Luis On the two-phase fractional Stefan problem. (English) Zbl 1434.80006 Adv. Nonlinear Stud. 20, No. 2, 437-458 (2020). MSC: 80A22 35D30 35K15 35K65 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{F. del Teso} et al., Adv. Nonlinear Stud. 20, No. 2, 437--458 (2020; Zbl 1434.80006) Full Text: DOI arXiv OpenURL
Macías-Díaz, J. E. A dynamically consistent exponential scheme to solve some advection-reaction equations with Riesz anomalous diffusion. (English) Zbl 1437.65107 J. Comput. Appl. Math. 378, Article ID 112920, 15 p. (2020). MSC: 65M06 35C05 35K20 35B45 26A33 35R11 35Q53 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Comput. Appl. Math. 378, Article ID 112920, 15 p. (2020; Zbl 1437.65107) Full Text: DOI OpenURL
Cabrales, Roberto Carlos; Gutiérrez-Santacreu, Juan Vicente; Rodríguez-Galván, José Rafael Numerical solution for an aggregation equation with degenerate diffusion. (English) Zbl 1474.65343 Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020). MSC: 65M60 35K55 45K05 35K20 65M06 65N30 35D30 65M12 PDF BibTeX XML Cite \textit{R. C. Cabrales} et al., Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020; Zbl 1474.65343) Full Text: DOI arXiv OpenURL
Giordano, Matteo; Kekkonen, Hanne Bernstein-von Mises theorems and uncertainty quantification for linear inverse problems. (English) Zbl 1436.62161 SIAM/ASA J. Uncertain. Quantif. 8, 342-373 (2020). MSC: 62G20 65N21 35J25 35K05 46E22 PDF BibTeX XML Cite \textit{M. Giordano} and \textit{H. Kekkonen}, SIAM/ASA J. Uncertain. Quantif. 8, 342--373 (2020; Zbl 1436.62161) Full Text: DOI arXiv OpenURL
Tuan, Nguyen Huy; Baleanu, Dumitru; Thach, Tran Ngoc; O’Regan, Donal; Can, Nguyen Huu Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data. (English) Zbl 1436.35327 J. Comput. Appl. Math. 376, Article ID 112883, 25 p. (2020). MSC: 35R30 65M32 35K20 35R11 47H10 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 376, Article ID 112883, 25 p. (2020; Zbl 1436.35327) Full Text: DOI arXiv OpenURL
Kraus, Johannes; Nakov, Svetoslav; Repin, Sergey I. Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation. (English) Zbl 1447.65150 Comput. Methods Appl. Math. 20, No. 2, 293-319 (2020). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 65N30 49M29 65N15 65N50 35J20 PDF BibTeX XML Cite \textit{J. Kraus} et al., Comput. Methods Appl. Math. 20, No. 2, 293--319 (2020; Zbl 1447.65150) Full Text: DOI arXiv OpenURL
Lyu, Pin; Liang, Yuxiang; Wang, Zhibo A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. (English) Zbl 1435.65128 Appl. Numer. Math. 151, 448-471 (2020). MSC: 65M06 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{P. Lyu} et al., Appl. Numer. Math. 151, 448--471 (2020; Zbl 1435.65128) Full Text: DOI arXiv OpenURL
Farcaş, I.-G.; Latz, J.; Ullmann, E.; Neckel, T.; Bungartz, H.-J. Multilevel adaptive sparse Leja approximations for Bayesian inverse problems. (English) Zbl 1432.35250 SIAM J. Sci. Comput. 42, No. 1, A424-A451 (2020). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 35R30 65D30 35J25 62F15 65N30 68T05 62-08 PDF BibTeX XML Cite \textit{I. G. Farcaş} et al., SIAM J. Sci. Comput. 42, No. 1, A424--A451 (2020; Zbl 1432.35250) Full Text: DOI arXiv OpenURL
Bou-Rabee, Nawaf; Holmes-Cerfon, Miranda C. Sticky Brownian motion and its numerical solution. (English) Zbl 1444.60048 SIAM Rev. 62, No. 1, 164-195 (2020). MSC: 60H10 65C30 60J60 60J65 35K05 35K20 65M06 PDF BibTeX XML Cite \textit{N. Bou-Rabee} and \textit{M. C. Holmes-Cerfon}, SIAM Rev. 62, No. 1, 164--195 (2020; Zbl 1444.60048) Full Text: DOI arXiv OpenURL
Kumar, Sandeep; Pathak, Ashish; Khan, Debashis Mathematical theory of subdivision. Finite element and wavelet methods. (English) Zbl 1432.65001 Boca Raton, FL: CRC Press (ISBN 978-1-138-05158-4/hbk; 978-1-315-16826-5/ebook). xv, 230 p. (2020). Reviewer: Dana Černá (Liberec) MSC: 65-01 65N30 42C40 PDF BibTeX XML Cite \textit{S. Kumar} et al., Mathematical theory of subdivision. Finite element and wavelet methods. Boca Raton, FL: CRC Press (2020; Zbl 1432.65001) Full Text: DOI OpenURL
Biazar, Jafar; Goldoust, Fereshteh Multi-dimensional Legendre wavelets approach on the Black-Scholes and Heston Cox Ingersoll Ross equations. (English) Zbl 07510906 AIMS Math. 4, No. 4, 1046-1064 (2019). MSC: 91G60 35Q91 35K10 35R60 60H30 65M70 91G20 PDF BibTeX XML Cite \textit{J. Biazar} and \textit{F. Goldoust}, AIMS Math. 4, No. 4, 1046--1064 (2019; Zbl 07510906) Full Text: DOI OpenURL
Ademola, A. T.; Akindeinde, S. O.; Ogundare, B. S.; Ogundiran, M. O.; Adesina, O. A. On the stability and boundedness of solutions to certain second order nonlinear stochastic delay differential equations. (English) Zbl 1474.34560 J. Niger. Math. Soc. 38, No. 2, 185-209 (2019). MSC: 34K50 34K20 65C30 65L07 PDF BibTeX XML Cite \textit{A. T. Ademola} et al., J. Niger. Math. Soc. 38, No. 2, 185--209 (2019; Zbl 1474.34560) Full Text: Link OpenURL
Ahsan, Muhammad; Siraj-ul-Islam; Hussain, Iltaf Haar wavelets multi-resolution collocation analysis of unsteady inverse heat problems. (English) Zbl 1461.65234 Inverse Probl. Sci. Eng. 27, No. 11, 1498-1520 (2019). MSC: 65M32 65L60 65T60 35K20 35R30 80A23 PDF BibTeX XML Cite \textit{M. Ahsan} et al., Inverse Probl. Sci. Eng. 27, No. 11, 1498--1520 (2019; Zbl 1461.65234) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Khoa, Vo Anh; Truong, Mai Thanh Nhat; Hung, Tran The; Minh, Mach Nguyet Application of the cut-off projection to solve a backward heat conduction problem in a two-slab composite system. (English) Zbl 1472.65116 Inverse Probl. Sci. Eng. 27, No. 4, 460-483 (2019). MSC: 65M30 65M32 80A23 65M12 65K10 35K05 35K51 35B65 34B24 34B09 35R25 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Inverse Probl. Sci. Eng. 27, No. 4, 460--483 (2019; Zbl 1472.65116) Full Text: DOI arXiv OpenURL
Shajari, P. Sattari; Shidfar, A. Application of weighted homotopy analysis method to solve an inverse source problem for wave equation. (English) Zbl 1471.65125 Inverse Probl. Sci. Eng. 27, No. 1, 61-88 (2019). MSC: 65M32 35M99 35R30 35L20 35L05 35C10 PDF BibTeX XML Cite \textit{P. S. Shajari} and \textit{A. Shidfar}, Inverse Probl. Sci. Eng. 27, No. 1, 61--88 (2019; Zbl 1471.65125) Full Text: DOI OpenURL
Singh, Swarn; Singh, Suruchi; Arora, Rajni An unconditionally stable numerical method for two-dimensional hyperbolic equations. (English) Zbl 1468.65168 East Asian J. Appl. Math. 9, No. 1, 195-211 (2019). MSC: 65M70 65D07 65L06 35L70 PDF BibTeX XML Cite \textit{S. Singh} et al., East Asian J. Appl. Math. 9, No. 1, 195--211 (2019; Zbl 1468.65168) Full Text: DOI OpenURL
Deiveegan, Arumugam; Nieto, Juan J.; Prakash, Periasamy The revised generalized Tikhonov method for the backward time-fractional diffusion equation. (English) Zbl 1461.35219 J. Appl. Anal. Comput. 9, No. 1, 45-56 (2019). MSC: 35R25 35R30 35R11 35K20 65M32 PDF BibTeX XML Cite \textit{A. Deiveegan} et al., J. Appl. Anal. Comput. 9, No. 1, 45--56 (2019; Zbl 1461.35219) Full Text: DOI OpenURL
Martens, Bjoern; Gerdts, Matthias Necessary and sufficient conditions for optimal control problems subject to Hessenberg differential algebraic equations of arbitrary index and mixed control-state constraints. (English) Zbl 1458.49020 Pure Appl. Funct. Anal. 4, No. 2, 363-387 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 49K21 65L80 PDF BibTeX XML Cite \textit{B. Martens} and \textit{M. Gerdts}, Pure Appl. Funct. Anal. 4, No. 2, 363--387 (2019; Zbl 1458.49020) Full Text: Link OpenURL