Bartusek, Miroslav; Dosla, Zuzana; Marini, Mauro Oscillatory solutions of Emden-Fowler type differential equation. (English) Zbl 07444211 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 54, 17 p. (2021). MSC: 34C10 34C15 PDF BibTeX XML Cite \textit{M. Bartusek} et al., Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 54, 17 p. (2021; Zbl 07444211) Full Text: DOI OpenURL
Bartušek, Miroslav; Graef, John R. The strong nonlinear limit-point/limit-circle problem. (English) Zbl 1479.34003 Trends in Abstract and Applied Analysis 6. Hackensack, NJ: World Scientific (ISBN 978-981-3226-37-1/hbk; 978-981-3226-39-5/ebook). xi, 312 p. (2018). Reviewer: Petr Zemánek (Brno) MSC: 34-02 34B20 34B24 34K05 34C10 34K11 PDF BibTeX XML Cite \textit{M. Bartušek} and \textit{J. R. Graef}, The strong nonlinear limit-point/limit-circle problem. Hackensack, NJ: World Scientific (2018; Zbl 1479.34003) Full Text: DOI OpenURL
Bartušek, Miroslav; Došlá, Zuzana; Marini, Mauro Unbounded solutions for differential equations with \(p\)-Laplacian and mixed nonlinearities. (English) Zbl 1362.34051 Georgian Math. J. 24, No. 1, 15-28 (2017). MSC: 34C11 34C10 PDF BibTeX XML Cite \textit{M. Bartušek} et al., Georgian Math. J. 24, No. 1, 15--28 (2017; Zbl 1362.34051) Full Text: DOI OpenURL
Bartušek, M.; Cecchi, M.; Došlá, Z.; Marini, M. Positive solutions of third order damped nonlinear differential equations. (English) Zbl 1224.34152 Math. Bohem. 136, No. 2, 205-213 (2011). MSC: 34D05 34C10 PDF BibTeX XML Cite \textit{M. Bartušek} et al., Math. Bohem. 136, No. 2, 205--213 (2011; Zbl 1224.34152) Full Text: EuDML OpenURL
Bartušek, Miroslav On noncontinuable solutions of \(n\)-th order differential equations. (English) Zbl 1180.34035 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 16, No. S1, Suppl., 322-326 (2009). MSC: 34C11 PDF BibTeX XML Cite \textit{M. Bartušek}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 16, No. S1, 322--326 (2009; Zbl 1180.34035) OpenURL
Bartusek, Miroslav; Medved, Milan Existence of global solutions for systems of second-order functional-differential equations with \(p\)-Laplacian. (English) Zbl 1171.34335 Electron. J. Differ. Equ. 2008, Paper No. 40, 8 p. (2008). MSC: 34K10 PDF BibTeX XML Cite \textit{M. Bartusek} and \textit{M. Medved}, Electron. J. Differ. Equ. 2008, Paper No. 40, 8 p. (2008; Zbl 1171.34335) Full Text: EuDML EMIS OpenURL
Bartušek, Miroslav; Cecchi, Mariella; Došlá, Zuzana; Marini, Mauro On oscillation and nonoscillation for differential equations with \(p\)-Laplacian. (English) Zbl 1136.34041 Georgian Math. J. 14, No. 2, 239-252 (2007). Reviewer: Qingkai Kong (DeKalb) MSC: 34C10 PDF BibTeX XML Cite \textit{M. Bartušek} et al., Georgian Math. J. 14, No. 2, 239--252 (2007; Zbl 1136.34041) OpenURL
Bartušek, M.; Cecchi, M.; Došlá, Z.; Marini, M. Global monotonicity and oscillation for second order differential equation. (English) Zbl 1081.34029 Czech. Math. J. 55, No. 1, 209-222 (2005). MSC: 34C10 PDF BibTeX XML Cite \textit{M. Bartušek} et al., Czech. Math. J. 55, No. 1, 209--222 (2005; Zbl 1081.34029) Full Text: DOI EuDML Link OpenURL