Laurent, Camille; Rosier, Lionel Exact controllability of semilinear heat equations in spaces of analytic functions. (English) Zbl 1448.93030 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047-1073 (2020). MSC: 93B05 35K20 35K59 93C20 PDF BibTeX XML Cite \textit{C. Laurent} and \textit{L. Rosier}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 1047--1073 (2020; Zbl 1448.93030) Full Text: DOI arXiv HAL OpenURL
Azmi, Behzad; Rodrigues, Sérgio S. Oblique projection local feedback stabilization of nonautonomous semilinear damped wave-like equations. (English) Zbl 1443.93102 J. Differ. Equations 269, No. 7, 6163-6192 (2020). Reviewer: Kaïs Ammari (Monastir) MSC: 93D15 93D23 93C20 35L05 35L71 PDF BibTeX XML Cite \textit{B. Azmi} and \textit{S. S. Rodrigues}, J. Differ. Equations 269, No. 7, 6163--6192 (2020; Zbl 1443.93102) Full Text: DOI OpenURL
Barrenechea, Gabriel R.; Jaillet, Fabrice; Paredes, Diego; Valentin, Frédéric The multiscale hybrid mixed method in general polygonal meshes. (English) Zbl 1440.65177 Numer. Math. 145, No. 1, 197-237 (2020). MSC: 65N30 65N12 65N55 35J15 35R09 PDF BibTeX XML Cite \textit{G. R. Barrenechea} et al., Numer. Math. 145, No. 1, 197--237 (2020; Zbl 1440.65177) Full Text: DOI Link OpenURL
Komech, Aleksandr I.; Kopylova, Elena A. Attractors of nonlinear Hamiltonian partial differential equations. (English. Russian original) Zbl 1439.35001 Russ. Math. Surv. 75, No. 1, 1-87 (2020); translation from Usp. Mat. Nauk 75, No. 1, 3-94 (2020). MSC: 35-02 35B41 35B40 35C08 35L71 35B06 PDF BibTeX XML Cite \textit{A. I. Komech} and \textit{E. A. Kopylova}, Russ. Math. Surv. 75, No. 1, 1--87 (2020; Zbl 1439.35001); translation from Usp. Mat. Nauk 75, No. 1, 3--94 (2020) Full Text: DOI arXiv OpenURL
Džurina, Jozef; Grace, Said R.; Jadlovská, Irena; Li, Tongxing Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. (English) Zbl 07206438 Math. Nachr. 293, No. 5, 910-922 (2020). MSC: 34C10 34K11 PDF BibTeX XML Cite \textit{J. Džurina} et al., Math. Nachr. 293, No. 5, 910--922 (2020; Zbl 07206438) Full Text: DOI OpenURL
Boumaza, Nouri; Gheraibia, Billel General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term. (English) Zbl 1439.35053 J. Math. Anal. Appl. 489, No. 2, Article ID 124185, 18 p. (2020). MSC: 35B40 35B44 35L72 35L20 35R09 PDF BibTeX XML Cite \textit{N. Boumaza} and \textit{B. Gheraibia}, J. Math. Anal. Appl. 489, No. 2, Article ID 124185, 18 p. (2020; Zbl 1439.35053) Full Text: DOI OpenURL
Hoyos, Milena Mixed first- and second-order cointegrated continuous time models with mixed stock and flow data. (English) Zbl 1478.62242 J. Time Ser. Anal. 41, No. 2, 249-267 (2020). Reviewer: Anatoliy Swishchuk (Calgary) MSC: 62M09 60H10 PDF BibTeX XML Cite \textit{M. Hoyos}, J. Time Ser. Anal. 41, No. 2, 249--267 (2020; Zbl 1478.62242) Full Text: DOI OpenURL
Alves, Claudianor O.; Rădulescu, Vicenţiu D. The Lane-Emden equation with variable double-phase and multiple regime. (English) Zbl 1444.35035 Proc. Am. Math. Soc. 148, No. 7, 2937-2952 (2020). Reviewer: Xingbin Pan (Shanghai) MSC: 35J20 35J25 35J75 35J92 35P30 PDF BibTeX XML Cite \textit{C. O. Alves} and \textit{V. D. Rădulescu}, Proc. Am. Math. Soc. 148, No. 7, 2937--2952 (2020; Zbl 1444.35035) Full Text: DOI arXiv OpenURL
Alimohammady, Mohsen; kalleji, Morteza Koozehgar Blow up property for viscoelastic evolution equations on manifolds with conical degeneration. (English) Zbl 1439.35500 Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 33, 25 p. (2020). Reviewer: Siran Li (Houston) MSC: 35R01 35L70 58J90 35B44 35Q74 74D10 PDF BibTeX XML Cite \textit{M. Alimohammady} and \textit{M. K. kalleji}, Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 33, 25 p. (2020; Zbl 1439.35500) Full Text: DOI arXiv OpenURL
Xiao, Lishun; Fan, Shengjun; Tian, Dejian Probabilistic interpretation of HJB equations by the representation theorem for generators of BSDEs. (English) Zbl 1461.60043 Electron. Commun. Probab. 25, Paper No. 30, 10 p. (2020). MSC: 60H10 35K20 49L25 PDF BibTeX XML Cite \textit{L. Xiao} et al., Electron. Commun. Probab. 25, Paper No. 30, 10 p. (2020; Zbl 1461.60043) Full Text: DOI arXiv Euclid OpenURL
Frankowska, Hélène; Zhang, Xu Necessary conditions for stochastic optimal control problems in infinite dimensions. (English) Zbl 1441.93337 Stochastic Processes Appl. 130, No. 7, 4081-4103 (2020). MSC: 93E20 49J53 60H15 PDF BibTeX XML Cite \textit{H. Frankowska} and \textit{X. Zhang}, Stochastic Processes Appl. 130, No. 7, 4081--4103 (2020; Zbl 1441.93337) Full Text: DOI arXiv OpenURL
Kunisch, Karl; Meinlschmidt, Hannes Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints. (English. French summary) Zbl 1442.35263 J. Math. Pures Appl. (9) 138, 46-87 (2020). Reviewer: Wiesław Kotarski (Sosnowiec) MSC: 35L71 49J20 49K20 35Q93 PDF BibTeX XML Cite \textit{K. Kunisch} and \textit{H. Meinlschmidt}, J. Math. Pures Appl. (9) 138, 46--87 (2020; Zbl 1442.35263) Full Text: DOI arXiv OpenURL
Jadlovská, Irena; Džurina, Jozef Kneser-type oscillation criteria for second-order half-linear delay differential equations. (English) Zbl 1451.34086 Appl. Math. Comput. 380, Article ID 125289, 14 p. (2020). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 34K11 PDF BibTeX XML Cite \textit{I. Jadlovská} and \textit{J. Džurina}, Appl. Math. Comput. 380, Article ID 125289, 14 p. (2020; Zbl 1451.34086) Full Text: DOI OpenURL
Yan, Lin; Wu, Bino; Chen, Qun; Wang, Zewen; Yu, Jun Lipschitz stability of an inverse source problem for ADMB-KdV equation. (English) Zbl 1442.35552 Topol. Methods Nonlinear Anal. 55, No. 1, 63-83 (2020). MSC: 35R30 35L05 35L10 35R09 PDF BibTeX XML Cite \textit{L. Yan} et al., Topol. Methods Nonlinear Anal. 55, No. 1, 63--83 (2020; Zbl 1442.35552) Full Text: DOI Euclid OpenURL
Deya, Aurélien On a non-linear 2D fractional wave equation. (English. French summary) Zbl 1434.60152 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 477-501 (2020). MSC: 60H15 60G22 35L71 PDF BibTeX XML Cite \textit{A. Deya}, Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 1, 477--501 (2020; Zbl 1434.60152) Full Text: DOI arXiv Euclid OpenURL
del Teso, Félix; Endal, Jørgen; Vázquez, Juan Luis On the two-phase fractional Stefan problem. (English) Zbl 1434.80006 Adv. Nonlinear Stud. 20, No. 2, 437-458 (2020). MSC: 80A22 35D30 35K15 35K65 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{F. del Teso} et al., Adv. Nonlinear Stud. 20, No. 2, 437--458 (2020; Zbl 1434.80006) Full Text: DOI arXiv OpenURL
Jadlovská, Irena Oscillation criteria of Kneser-type for second-order half-linear advanced differential equations. (English) Zbl 1446.34082 Appl. Math. Lett. 106, Article ID 106354, 7 p. (2020). Reviewer: Fatma Karakoc (Ankara) MSC: 34K11 PDF BibTeX XML Cite \textit{I. Jadlovská}, Appl. Math. Lett. 106, Article ID 106354, 7 p. (2020; Zbl 1446.34082) Full Text: DOI OpenURL
Cheggag, Mustapha; Labbas, Rabah; Maingot, Stéphane; Kaid, Mohammed New results on elliptic equations with nonlocal boundary coefficient-operator conditions in UMD spaces: noncommutative cases. (English) Zbl 1440.35043 Mediterr. J. Math. 17, No. 2, Paper No. 64, 18 p. (2020). MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{M. Cheggag} et al., Mediterr. J. Math. 17, No. 2, Paper No. 64, 18 p. (2020; Zbl 1440.35043) Full Text: DOI OpenURL
Macías-Díaz, J. E. A dynamically consistent exponential scheme to solve some advection-reaction equations with Riesz anomalous diffusion. (English) Zbl 1437.65107 J. Comput. Appl. Math. 378, Article ID 112920, 15 p. (2020). MSC: 65M06 35C05 35K20 35B45 26A33 35R11 35Q53 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Comput. Appl. Math. 378, Article ID 112920, 15 p. (2020; Zbl 1437.65107) Full Text: DOI OpenURL
Horsin, Thierry; Jendoubi, Mohamed Ali An extension of a Lyapunov approach to the stabilization of second order coupled systems. (English) Zbl 1441.35052 ESAIM, Control Optim. Calc. Var. 26, Paper No. 19, 16 p. (2020). Reviewer: Kaïs Ammari (Monastir) MSC: 35B40 35L90 35L53 49J15 49J20 PDF BibTeX XML Cite \textit{T. Horsin} and \textit{M. A. Jendoubi}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 19, 16 p. (2020; Zbl 1441.35052) Full Text: DOI arXiv OpenURL
Turmetov, B.; Nazarova, K. On a generalization of the Neumann problem for the Laplace equation. (English) Zbl 07197943 Math. Nachr. 293, No. 1, 169-177 (2020). MSC: 26A33 34B10 35J05 35J25 PDF BibTeX XML Cite \textit{B. Turmetov} and \textit{K. Nazarova}, Math. Nachr. 293, No. 1, 169--177 (2020; Zbl 07197943) Full Text: DOI OpenURL
Cabrales, Roberto Carlos; Gutiérrez-Santacreu, Juan Vicente; Rodríguez-Galván, José Rafael Numerical solution for an aggregation equation with degenerate diffusion. (English) Zbl 1474.65343 Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020). MSC: 65M60 35K55 45K05 35K20 65M06 65N30 35D30 65M12 PDF BibTeX XML Cite \textit{R. C. Cabrales} et al., Appl. Math. Comput. 377, Article ID 125145, 24 p. (2020; Zbl 1474.65343) Full Text: DOI arXiv OpenURL
Kuznetsov, N. The floating-body problem: an integro-differential equation without irregular frequencies. (English) Zbl 1437.35178 St. Petersbg. Math. J. 31, No. 3, 521-531 (2020) and Algebra Anal. 31, No. 3, (2019). MSC: 35J05 35J25 31B05 PDF BibTeX XML Cite \textit{N. Kuznetsov}, St. Petersbg. Math. J. 31, No. 3, 521--531 (2020; Zbl 1437.35178) Full Text: DOI arXiv OpenURL
Lv, Guangying; Gao, Hongjun; Wei, Jinlong; Wu, Jiang-Lun The effect of noise intensity on parabolic equations. (English) Zbl 1437.35712 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1715-1728 (2020). MSC: 35R60 35K20 60H15 60H40 PDF BibTeX XML Cite \textit{G. Lv} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1715--1728 (2020; Zbl 1437.35712) Full Text: DOI arXiv OpenURL
Zhang, Mu-Ming; Xu, Tian-Yuan; Yin, Jing-Xue Controllability properties of degenerate pseudo-parabolic boundary control problems. (English) Zbl 1441.93042 Math. Control Relat. Fields 10, No. 1, 157-169 (2020). MSC: 93B05 93B07 93C20 35K10 PDF BibTeX XML Cite \textit{M.-M. Zhang} et al., Math. Control Relat. Fields 10, No. 1, 157--169 (2020; Zbl 1441.93042) Full Text: DOI OpenURL
Clarke, Jorge; Olivera, Christian Local \(L^p\)-solution for semilinear heat equation with fractional noise. (English) Zbl 1437.60036 Ann. Acad. Sci. Fenn., Math. 45, No. 1, 305-312 (2020). MSC: 60H15 60H30 35R60 35K05 35K10 35K58 PDF BibTeX XML Cite \textit{J. Clarke} and \textit{C. Olivera}, Ann. Acad. Sci. Fenn., Math. 45, No. 1, 305--312 (2020; Zbl 1437.60036) Full Text: DOI arXiv OpenURL
Ivec, Ivan; Lazar, Martin Propagation principle for parabolic H-measures. (English) Zbl 1446.35275 J. Pseudo-Differ. Oper. Appl. 11, No. 1, 467-489 (2020). MSC: 35S05 35K10 35K25 35Q41 46G10 PDF BibTeX XML Cite \textit{I. Ivec} and \textit{M. Lazar}, J. Pseudo-Differ. Oper. Appl. 11, No. 1, 467--489 (2020; Zbl 1446.35275) Full Text: DOI OpenURL
Giordano, Matteo; Kekkonen, Hanne Bernstein-von Mises theorems and uncertainty quantification for linear inverse problems. (English) Zbl 1436.62161 SIAM/ASA J. Uncertain. Quantif. 8, 342-373 (2020). MSC: 62G20 65N21 35J25 35K05 46E22 PDF BibTeX XML Cite \textit{M. Giordano} and \textit{H. Kekkonen}, SIAM/ASA J. Uncertain. Quantif. 8, 342--373 (2020; Zbl 1436.62161) Full Text: DOI arXiv OpenURL
Dao, Manh-Khang; Djehiche, Boualem Hamilton-Jacobi equations for optimal control on multidimensional junctions with entry costs. (English) Zbl 1437.49042 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 2, Paper No. 23, 42 p. (2020). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49L25 49J15 49L20 35F21 93C30 35-02 34H05 93B52 35L20 35L70 PDF BibTeX XML Cite \textit{M.-K. Dao} and \textit{B. Djehiche}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 2, Paper No. 23, 42 p. (2020; Zbl 1437.49042) Full Text: DOI arXiv OpenURL
Wang, Jun; Zhao, Tingting; Xiao, Lu Existence and asymptotical behavior of the minimizer of Hartree type equation with periodic potentials. (English) Zbl 1439.35448 Complex Var. Elliptic Equ. 65, No. 5, 740-764 (2020). Reviewer: Huansong Zhou (Wuhan) MSC: 35Q55 35J61 35J20 35Q60 49J40 35B32 35A01 35B40 35R09 90C30 PDF BibTeX XML Cite \textit{J. Wang} et al., Complex Var. Elliptic Equ. 65, No. 5, 740--764 (2020; Zbl 1439.35448) Full Text: DOI OpenURL
Leonenko, Nikolai; Vaz, Jayme jun. Spectral analysis of fractional hyperbolic diffusion equations with random data. (English) Zbl 1436.35007 J. Stat. Phys. 179, No. 1, 155-175 (2020). MSC: 35A08 35R11 35R60 35R01 35L15 35P05 PDF BibTeX XML Cite \textit{N. Leonenko} and \textit{J. Vaz jun.}, J. Stat. Phys. 179, No. 1, 155--175 (2020; Zbl 1436.35007) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Baleanu, Dumitru; Thach, Tran Ngoc; O’Regan, Donal; Can, Nguyen Huu Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data. (English) Zbl 1436.35327 J. Comput. Appl. Math. 376, Article ID 112883, 25 p. (2020). MSC: 35R30 65M32 35K20 35R11 47H10 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Comput. Appl. Math. 376, Article ID 112883, 25 p. (2020; Zbl 1436.35327) Full Text: DOI arXiv OpenURL
Liao, Menglan; Liu, Qiang; Ye, Hailong Global existence and blow-up of weak solutions for a class of fractional \(p\)-Laplacian evolution equations. (English) Zbl 1436.35319 Adv. Nonlinear Anal. 9, 1569-1591 (2020). MSC: 35R11 35K20 35B44 35D30 PDF BibTeX XML Cite \textit{M. Liao} et al., Adv. Nonlinear Anal. 9, 1569--1591 (2020; Zbl 1436.35319) Full Text: DOI OpenURL
Kraus, Johannes; Nakov, Svetoslav; Repin, Sergey I. Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation. (English) Zbl 1447.65150 Comput. Methods Appl. Math. 20, No. 2, 293-319 (2020). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 65N30 49M29 65N15 65N50 35J20 PDF BibTeX XML Cite \textit{J. Kraus} et al., Comput. Methods Appl. Math. 20, No. 2, 293--319 (2020; Zbl 1447.65150) Full Text: DOI arXiv OpenURL
Qui, Nguyen Thanh Subdifferentials of marginal functions of parametric bang-bang control problems. (English) Zbl 1437.35340 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111743, 13 p. (2020). MSC: 35J61 35J25 49J52 49J53 49K20 49K30 PDF BibTeX XML Cite \textit{N. T. Qui}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111743, 13 p. (2020; Zbl 1437.35340) Full Text: DOI OpenURL
Chen, Xinfu; Jiang, Huiqiang; Liu, Guoqing Boundary spike of the singular limit of an energy minimizing problem. (English) Zbl 1437.35210 Discrete Contin. Dyn. Syst. 40, No. 6, 3253-3290 (2020). MSC: 35J20 74K35 34B18 PDF BibTeX XML Cite \textit{X. Chen} et al., Discrete Contin. Dyn. Syst. 40, No. 6, 3253--3290 (2020; Zbl 1437.35210) Full Text: DOI OpenURL
Trofimchuk, Sergei; Volpert, Vitaly Existence of bistable waves for a nonlocal and nonmonotone reaction-diffusion equation. (English) Zbl 1480.35088 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 721-739 (2020). MSC: 35C07 35K57 35K15 35R09 92D25 PDF BibTeX XML Cite \textit{S. Trofimchuk} and \textit{V. Volpert}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 721--739 (2020; Zbl 1480.35088) Full Text: DOI OpenURL
Nakashima, Kimie Multiple existence of indefinite nonlinear diffusion problem in population genetics. (English) Zbl 1439.35210 J. Differ. Equations 268, No. 12, 7803-7842 (2020). Reviewer: Guglielmo Feltrin (Spilimbergo) MSC: 35K20 34B08 34B15 34B18 35K58 35K57 PDF BibTeX XML Cite \textit{K. Nakashima}, J. Differ. Equations 268, No. 12, 7803--7842 (2020; Zbl 1439.35210) Full Text: DOI OpenURL
Feng, Baowei; Soufyane, Abdelaziz Optimal decay rates of a nonlinear time-delayed viscoelastic wave equation. (English) Zbl 1463.35349 Differ. Integral Equ. 33, No. 1-2, 43-65 (2020). Reviewer: Marie Kopáčková (Praha) MSC: 35L70 35R09 45K05 PDF BibTeX XML Cite \textit{B. Feng} and \textit{A. Soufyane}, Differ. Integral Equ. 33, No. 1--2, 43--65 (2020; Zbl 1463.35349) OpenURL
Benibrir, Fatiha; Hakem, Ali Global nonexitence for damped wave equation with nonlinear memory on the Heisenberg group. (English) Zbl 1435.35079 Funct. Anal. Approx. Comput. 12, No. 1, 23-31 (2020). MSC: 35B44 35L71 35R03 35R09 PDF BibTeX XML Cite \textit{F. Benibrir} and \textit{A. Hakem}, Funct. Anal. Approx. Comput. 12, No. 1, 23--31 (2020; Zbl 1435.35079) Full Text: Link OpenURL
Zheng, Xiangcheng; Wang, Hong Wellposedness and smoothing properties of history-state-based variable-order time-fractional diffusion equations. (English) Zbl 1444.35159 Z. Angew. Math. Phys. 71, No. 1, Paper No. 34, 25 p. (2020). Reviewer: Neville Ford (Chester) MSC: 35R11 35B65 35K20 PDF BibTeX XML Cite \textit{X. Zheng} and \textit{H. Wang}, Z. Angew. Math. Phys. 71, No. 1, Paper No. 34, 25 p. (2020; Zbl 1444.35159) Full Text: DOI OpenURL
Lyu, Pin; Liang, Yuxiang; Wang, Zhibo A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. (English) Zbl 1435.65128 Appl. Numer. Math. 151, 448-471 (2020). MSC: 65M06 65M12 65M15 26A33 35R11 PDF BibTeX XML Cite \textit{P. Lyu} et al., Appl. Numer. Math. 151, 448--471 (2020; Zbl 1435.65128) Full Text: DOI arXiv OpenURL
Farcaş, I.-G.; Latz, J.; Ullmann, E.; Neckel, T.; Bungartz, H.-J. Multilevel adaptive sparse Leja approximations for Bayesian inverse problems. (English) Zbl 1432.35250 SIAM J. Sci. Comput. 42, No. 1, A424-A451 (2020). Reviewer: Rózsa Horváth-Bokor (Budakalász) MSC: 35R30 65D30 35J25 62F15 65N30 68T05 62-08 PDF BibTeX XML Cite \textit{I. G. Farcaş} et al., SIAM J. Sci. Comput. 42, No. 1, A424--A451 (2020; Zbl 1432.35250) Full Text: DOI arXiv OpenURL
Bou-Rabee, Nawaf; Holmes-Cerfon, Miranda C. Sticky Brownian motion and its numerical solution. (English) Zbl 1444.60048 SIAM Rev. 62, No. 1, 164-195 (2020). MSC: 60H10 65C30 60J60 60J65 35K05 35K20 65M06 PDF BibTeX XML Cite \textit{N. Bou-Rabee} and \textit{M. C. Holmes-Cerfon}, SIAM Rev. 62, No. 1, 164--195 (2020; Zbl 1444.60048) Full Text: DOI arXiv OpenURL
Goulart, Claudiano On Bäcklund and Ribaucour transformations for hyperbolic linear Weingarten surfaces. (English) Zbl 1431.53007 Bol. Soc. Parana. Mat. (3) 38, No. 1, 9-39 (2020). MSC: 53A05 53C21 53C42 35L70 35Q51 PDF BibTeX XML Cite \textit{C. Goulart}, Bol. Soc. Parana. Mat. (3) 38, No. 1, 9--39 (2020; Zbl 1431.53007) Full Text: Link OpenURL
Figula, Ágota; Horváth, Gábor; Milkovszki, Tamás; Muzsnay, Zoltán The Lie symmetry group of the general Liénard-type equation. (English) Zbl 1436.34030 J. Nonlinear Math. Phys. 27, No. 2, 185-198 (2020). MSC: 34C14 34A26 34C20 PDF BibTeX XML Cite \textit{Á. Figula} et al., J. Nonlinear Math. Phys. 27, No. 2, 185--198 (2020; Zbl 1436.34030) Full Text: DOI arXiv OpenURL
Kravvaritis, Dimitrios C.; Yannacopoulos, Athanasios N. Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. (English) Zbl 1443.49001 De Gruyter Graduate. Berlin: De Gruyter (ISBN 978-3-11-064736-5/pbk; 978-3-11-064738-9/ebook). xxv, 474 p. (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 49-02 47-02 35J20 35J25 35J50 35J57 46A55 47H04 47H05 47H09 47H10 47J20 47J25 47J30 49J35 49J40 49J50 49J52 49J53 49K20 49K35 49N15 49N60 58C30 58E05 58E30 58E35 58J05 58J32 90C25 PDF BibTeX XML Cite \textit{D. C. Kravvaritis} and \textit{A. N. Yannacopoulos}, Variational methods in nonlinear analysis. With applications in optimization and partial differential equations. Berlin: De Gruyter (2020; Zbl 1443.49001) Full Text: DOI OpenURL
Ma, Honglv; Zhang, Jin; Zhong, Chengkui Attractors for the degenerate Kirchhoff wave model with strong damping: existence and the fractal dimension. (English) Zbl 1432.35029 J. Math. Anal. Appl. 484, No. 1, Article ID 123670, 15 p. (2020). MSC: 35B41 35L20 35L71 35R09 PDF BibTeX XML Cite \textit{H. Ma} et al., J. Math. Anal. Appl. 484, No. 1, Article ID 123670, 15 p. (2020; Zbl 1432.35029) Full Text: DOI OpenURL
Burger, Martin; Friele, Patricia; Pietschmann, Jan-Frederik On a reaction-cross-diffusion system modeling the growth of glioblastoma. (English) Zbl 1428.35157 SIAM J. Appl. Math. 80, No. 1, 160-182 (2020). MSC: 35K45 35K55 35K65 92C50 35Q92 PDF BibTeX XML Cite \textit{M. Burger} et al., SIAM J. Appl. Math. 80, No. 1, 160--182 (2020; Zbl 1428.35157) Full Text: DOI arXiv OpenURL
Cornalba, Federico; Shardlow, Tony; Zimmer, Johannes From weakly interacting particles to a regularised Dean-Kawasaki model. (English) Zbl 1439.60059 Nonlinearity 33, No. 2, 864-891 (2020). MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{F. Cornalba} et al., Nonlinearity 33, No. 2, 864--891 (2020; Zbl 1439.60059) Full Text: DOI arXiv OpenURL
de Laire, André; Mennuni, Pierre Traveling waves for some nonlocal 1D Gross-Pitaevskii equations with nonzero conditions at infinity. (English) Zbl 1431.35170 Discrete Contin. Dyn. Syst. 40, No. 1, 635-682 (2020). MSC: 35Q55 35J20 35C07 35B35 35C08 35Q53 37K06 49J20 PDF BibTeX XML Cite \textit{A. de Laire} and \textit{P. Mennuni}, Discrete Contin. Dyn. Syst. 40, No. 1, 635--682 (2020; Zbl 1431.35170) Full Text: DOI arXiv OpenURL
Lu, Shiping; Yu, Xingchen Periodic solutions for second order differential equations with indefinite singularities. (English) Zbl 1431.34055 Adv. Nonlinear Anal. 9, 994-1007 (2020). MSC: 34C25 34B16 34B18 47N20 PDF BibTeX XML Cite \textit{S. Lu} and \textit{X. Yu}, Adv. Nonlinear Anal. 9, 994--1007 (2020; Zbl 1431.34055) Full Text: DOI OpenURL
Wu, Tsung-Fang On a class of nonlocal nonlinear Schrödinger equations with potential well. (English) Zbl 1423.35113 Adv. Nonlinear Anal. 9, 665-689 (2020). MSC: 35J61 35J10 35B09 34B40 35J20 PDF BibTeX XML Cite \textit{T.-F. Wu}, Adv. Nonlinear Anal. 9, 665--689 (2020; Zbl 1423.35113) Full Text: DOI OpenURL
Kumar, Sandeep; Pathak, Ashish; Khan, Debashis Mathematical theory of subdivision. Finite element and wavelet methods. (English) Zbl 1432.65001 Boca Raton, FL: CRC Press (ISBN 978-1-138-05158-4/hbk; 978-1-315-16826-5/ebook). xv, 230 p. (2020). Reviewer: Dana Černá (Liberec) MSC: 65-01 65N30 42C40 PDF BibTeX XML Cite \textit{S. Kumar} et al., Mathematical theory of subdivision. Finite element and wavelet methods. Boca Raton, FL: CRC Press (2020; Zbl 1432.65001) Full Text: DOI OpenURL
Berezansky, Leonid; Domoshnitsky, Alexander Nonoscillation and exponential stability of the second order delay differential equation with damping. (English) Zbl 07526295 Appl. Anal. Optim. 3, No. 2, 147-158 (2019). MSC: 34K20 PDF BibTeX XML Cite \textit{L. Berezansky} and \textit{A. Domoshnitsky}, Appl. Anal. Optim. 3, No. 2, 147--158 (2019; Zbl 07526295) OpenURL
Biazar, Jafar; Goldoust, Fereshteh Multi-dimensional Legendre wavelets approach on the Black-Scholes and Heston Cox Ingersoll Ross equations. (English) Zbl 07510906 AIMS Math. 4, No. 4, 1046-1064 (2019). MSC: 91G60 35Q91 35K10 35R60 60H30 65M70 91G20 PDF BibTeX XML Cite \textit{J. Biazar} and \textit{F. Goldoust}, AIMS Math. 4, No. 4, 1046--1064 (2019; Zbl 07510906) Full Text: DOI OpenURL
Bray, William O.; Hunter, Ellen Wave equations & energy. (English) Zbl 07510870 AIMS Math. 4, No. 3, 463-481 (2019). MSC: 35L20 34B24 35A24 42B37 PDF BibTeX XML Cite \textit{W. O. Bray} and \textit{E. Hunter}, AIMS Math. 4, No. 3, 463--481 (2019; Zbl 07510870) Full Text: DOI OpenURL
Stević, Stevo Note on some consequences of a problem by Dellac. (English) Zbl 07489633 Adv. Difference Equ. 2019, Paper No. 298, 11 p. (2019). MSC: 34A40 34A30 PDF BibTeX XML Cite \textit{S. Stević}, Adv. Difference Equ. 2019, Paper No. 298, 11 p. (2019; Zbl 07489633) Full Text: DOI OpenURL
Hamadi, Yassamina; Bougada, Djillali; Omrane, Abdennebi Sentinels for an epidemiological \(SIR\) model with spatial diffusion. (English) Zbl 07473644 Mathematica 61(84), No. 2, 129-137 (2019). MSC: 35K05 35K51 49J20 92D30 93B05 PDF BibTeX XML Cite \textit{Y. Hamadi} et al., Mathematica 61(84), No. 2, 129--137 (2019; Zbl 07473644) Full Text: DOI OpenURL
Azizpour, Esmaeil; Atayi, Dordi Mohammad Dynamical symmetries for graded vector fields. (English) Zbl 07473459 J. Dyn. Syst. Geom. Theor. 17, No. 2, 187-203 (2019). MSC: 58A50 58A30 58C50 70H33 PDF BibTeX XML Cite \textit{E. Azizpour} and \textit{D. M. Atayi}, J. Dyn. Syst. Geom. Theor. 17, No. 2, 187--203 (2019; Zbl 07473459) Full Text: DOI OpenURL
Ademola, A. T.; Akindeinde, S. O.; Ogundare, B. S.; Ogundiran, M. O.; Adesina, O. A. On the stability and boundedness of solutions to certain second order nonlinear stochastic delay differential equations. (English) Zbl 1474.34560 J. Niger. Math. Soc. 38, No. 2, 185-209 (2019). MSC: 34K50 34K20 65C30 65L07 PDF BibTeX XML Cite \textit{A. T. Ademola} et al., J. Niger. Math. Soc. 38, No. 2, 185--209 (2019; Zbl 1474.34560) Full Text: Link OpenURL
Kasemsuwan, Jaipong; Sabau, Sorin Vasile; Somboon, Uraiwan Differential transformation method for circular membrane vibrations. (English) Zbl 07417602 Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 12(61), No. 2, 333-350 (2019). MSC: 35L05 35L20 PDF BibTeX XML Cite \textit{J. Kasemsuwan} et al., Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys. 12(61), No. 2, 333--350 (2019; Zbl 07417602) Full Text: DOI OpenURL
Shvydkyi, O. N. Solvability of the initial problem for the heat equation with a fractional Laplace operator. (Russian. English summary) Zbl 1483.35105 Tr. Inst. Prikl. Mat. Mekh. 33, 131-143 (2019). MSC: 35K15 35R11 PDF BibTeX XML Cite \textit{O. N. Shvydkyi}, Tr. Inst. Prikl. Mat. Mekh. 33, 131--143 (2019; Zbl 1483.35105) OpenURL
Karpuz, Başak; Santra, Shyam S. Oscillation theorems for second-order nonlinear delay differential equations of neutral type. (English) Zbl 1471.34135 Hacet. J. Math. Stat. 48, No. 3, 633-643 (2019). MSC: 34K11 34C10 34C15 34K40 PDF BibTeX XML Cite \textit{B. Karpuz} and \textit{S. S. Santra}, Hacet. J. Math. Stat. 48, No. 3, 633--643 (2019; Zbl 1471.34135) Full Text: Link OpenURL
Chatzarakis, George E.; Jadlovska, İrena Improved oscillation results for second-order half-linear delay differential equations. (English) Zbl 1471.34132 Hacet. J. Math. Stat. 48, No. 1, 170-179 (2019). MSC: 34K11 34C10 PDF BibTeX XML Cite \textit{G. E. Chatzarakis} and \textit{İ. Jadlovska}, Hacet. J. Math. Stat. 48, No. 1, 170--179 (2019; Zbl 1471.34132) Full Text: Link OpenURL
Pavlenko, V. N.; Asryan, A. A. Periodic solutions existence for a second order differential equation with a discontinuous nonlinearity. (Russian. English summary) Zbl 1470.34122 Chelyabinskiĭ Fiz.-Mat. Zh. 4, No. 3, 323-332 (2019). MSC: 34C25 34A36 34B15 PDF BibTeX XML Cite \textit{V. N. Pavlenko} and \textit{A. A. Asryan}, Chelyabinskiĭ Fiz.-Mat. Zh. 4, No. 3, 323--332 (2019; Zbl 1470.34122) Full Text: DOI MNR OpenURL
Sadybekov, M. A.; Derbissaly, B. O. Boundary conditions of volume hyperbolic potential in a domain with curvilinear boundary. (English) Zbl 07401971 Mat. Zh. 19, No. 4, 27-45 (2019). MSC: 34K10 35B65 35L20 PDF BibTeX XML Cite \textit{M. A. Sadybekov} and \textit{B. O. Derbissaly}, Mat. Zh. 19, No. 4, 27--45 (2019; Zbl 07401971) OpenURL
Sadybekov, M. A.; Sarsenbi, A. A. On inverse problem of reconstructing a heat subdiffusion process with periodic data. (English) Zbl 07401959 Mat. Zh. 19, No. 2, 105-120 (2019). MSC: 35K20 35L15 35R11 35R30 34K06 35K05 PDF BibTeX XML Cite \textit{M. A. Sadybekov} and \textit{A. A. Sarsenbi}, Mat. Zh. 19, No. 2, 105--120 (2019; Zbl 07401959) OpenURL
Li, Jian; Han, Yuzhu Global existence and finite time blow-up of solutions to a nonlocal \(p\)-Laplace equation. (English) Zbl 1472.35235 Math. Model. Anal. 24, No. 2, 195-217 (2019). MSC: 35K92 35B44 35K20 35R09 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Han}, Math. Model. Anal. 24, No. 2, 195--217 (2019; Zbl 1472.35235) Full Text: DOI OpenURL
Ahsan, Muhammad; Siraj-ul-Islam; Hussain, Iltaf Haar wavelets multi-resolution collocation analysis of unsteady inverse heat problems. (English) Zbl 1461.65234 Inverse Probl. Sci. Eng. 27, No. 11, 1498-1520 (2019). MSC: 65M32 65L60 65T60 35K20 35R30 80A23 PDF BibTeX XML Cite \textit{M. Ahsan} et al., Inverse Probl. Sci. Eng. 27, No. 11, 1498--1520 (2019; Zbl 1461.65234) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Khoa, Vo Anh; Truong, Mai Thanh Nhat; Hung, Tran The; Minh, Mach Nguyet Application of the cut-off projection to solve a backward heat conduction problem in a two-slab composite system. (English) Zbl 1472.65116 Inverse Probl. Sci. Eng. 27, No. 4, 460-483 (2019). MSC: 65M30 65M32 80A23 65M12 65K10 35K05 35K51 35B65 34B24 34B09 35R25 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Inverse Probl. Sci. Eng. 27, No. 4, 460--483 (2019; Zbl 1472.65116) Full Text: DOI arXiv OpenURL
Shajari, P. Sattari; Shidfar, A. Application of weighted homotopy analysis method to solve an inverse source problem for wave equation. (English) Zbl 1471.65125 Inverse Probl. Sci. Eng. 27, No. 1, 61-88 (2019). MSC: 65M32 35M99 35R30 35L20 35L05 35C10 PDF BibTeX XML Cite \textit{P. S. Shajari} and \textit{A. Shidfar}, Inverse Probl. Sci. Eng. 27, No. 1, 61--88 (2019; Zbl 1471.65125) Full Text: DOI OpenURL
Singh, Swarn; Singh, Suruchi; Arora, Rajni An unconditionally stable numerical method for two-dimensional hyperbolic equations. (English) Zbl 1468.65168 East Asian J. Appl. Math. 9, No. 1, 195-211 (2019). MSC: 65M70 65D07 65L06 35L70 PDF BibTeX XML Cite \textit{S. Singh} et al., East Asian J. Appl. Math. 9, No. 1, 195--211 (2019; Zbl 1468.65168) Full Text: DOI OpenURL
Li, Fushan; Xi, Shuai; Xu, Ke; Xue, Xiaomin Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II. (English) Zbl 1461.35157 J. Appl. Anal. Comput. 9, No. 6, 2318-2332 (2019). MSC: 35L72 35L20 35B44 35R09 74D10 PDF BibTeX XML Cite \textit{F. Li} et al., J. Appl. Anal. Comput. 9, No. 6, 2318--2332 (2019; Zbl 1461.35157) Full Text: DOI OpenURL
Lin, Jiazhe; Xu, Rui; Tian, Xiaohong Pattern formation in reaction-diffusion neural networks with leakage delay. (English) Zbl 1461.35041 J. Appl. Anal. Comput. 9, No. 6, 2224-2244 (2019). MSC: 35B36 35K57 35K51 35B32 35R10 92B20 PDF BibTeX XML Cite \textit{J. Lin} et al., J. Appl. Anal. Comput. 9, No. 6, 2224--2244 (2019; Zbl 1461.35041) Full Text: DOI OpenURL
Xu, Jiafa; Wei, Zhongli; Regan, Donal O.; Cui, Yujun Infinitely many solutions for fractional Schrödinger-Maxwell equations. (English) Zbl 1465.35144 J. Appl. Anal. Comput. 9, No. 3, 1165-1182 (2019). MSC: 35J10 35J47 35R11 35A01 PDF BibTeX XML Cite \textit{J. Xu} et al., J. Appl. Anal. Comput. 9, No. 3, 1165--1182 (2019; Zbl 1465.35144) Full Text: DOI OpenURL
Deiveegan, Arumugam; Nieto, Juan J.; Prakash, Periasamy The revised generalized Tikhonov method for the backward time-fractional diffusion equation. (English) Zbl 1461.35219 J. Appl. Anal. Comput. 9, No. 1, 45-56 (2019). MSC: 35R25 35R30 35R11 35K20 65M32 PDF BibTeX XML Cite \textit{A. Deiveegan} et al., J. Appl. Anal. Comput. 9, No. 1, 45--56 (2019; Zbl 1461.35219) Full Text: DOI OpenURL
Martens, Bjoern; Gerdts, Matthias Necessary and sufficient conditions for optimal control problems subject to Hessenberg differential algebraic equations of arbitrary index and mixed control-state constraints. (English) Zbl 1458.49020 Pure Appl. Funct. Anal. 4, No. 2, 363-387 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 49K21 65L80 PDF BibTeX XML Cite \textit{B. Martens} and \textit{M. Gerdts}, Pure Appl. Funct. Anal. 4, No. 2, 363--387 (2019; Zbl 1458.49020) Full Text: Link OpenURL
Mohamed, N. A.; Ibrahim, N. F.; Mohamed, N. F.; Mohamed, N. H. Spectrum of Dirichlet BDIDE operator. (English) Zbl 1453.65398 Malays. J. Math. Sci. 13, Spec. Iss.: Conference on Mathematics, Informatics and Statistics (CMIS2018), 139-152 (2019). MSC: 65N25 65R20 35R09 45K05 35J25 35J08 35P15 PDF BibTeX XML Cite \textit{N. A. Mohamed} et al., Malays. J. Math. Sci. 13, 139--152 (2019; Zbl 1453.65398) Full Text: Link OpenURL
Zhu, Yu Existence of periodic solutions for a second order differential equation with a singularity of indefinite type. (Chinese. English summary) Zbl 1463.34280 Acta Math. Appl. Sin. 42, No. 4, 433-441 (2019). MSC: 34K13 37C60 PDF BibTeX XML Cite \textit{Y. Zhu}, Acta Math. Appl. Sin. 42, No. 4, 433--441 (2019; Zbl 1463.34280) OpenURL
Cortés, J.-C.; Navarro-Quiles, Ana; Romero, J.-V.; Roselló, M.-D. Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loève expansion and the random variable transformation technique. (English) Zbl 1464.60059 Commun. Nonlinear Sci. Numer. Simul. 72, 121-138 (2019). MSC: 60H10 34F05 60G12 PDF BibTeX XML Cite \textit{J. C. Cortés} et al., Commun. Nonlinear Sci. Numer. Simul. 72, 121--138 (2019; Zbl 1464.60059) Full Text: DOI arXiv OpenURL
Qiao, Leijie; Xu, Da BDF ADI orthogonal spline collocation scheme for the fractional integro-differential equation with two weakly singular kernels. (English) Zbl 1443.65250 Comput. Math. Appl. 78, No. 12, 3807-3820 (2019). MSC: 65M70 PDF BibTeX XML Cite \textit{L. Qiao} and \textit{D. Xu}, Comput. Math. Appl. 78, No. 12, 3807--3820 (2019; Zbl 1443.65250) Full Text: DOI OpenURL
Su, Yu; Chen, Haibo Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent. (English) Zbl 1442.35525 Comput. Math. Appl. 78, No. 6, 2063-2082 (2019). MSC: 35R11 35A15 35B33 35J20 35J60 PDF BibTeX XML Cite \textit{Y. Su} and \textit{H. Chen}, Comput. Math. Appl. 78, No. 6, 2063--2082 (2019; Zbl 1442.35525) Full Text: DOI OpenURL
Chen, Jixin; Yang, Danping Explicit/implicit and Crank-Nicolson domain decomposition methods for parabolic partial differential equations. (English) Zbl 1442.65153 Comput. Math. Appl. 77, No. 7, 1841-1863 (2019). MSC: 65M06 65M55 35K20 PDF BibTeX XML Cite \textit{J. Chen} and \textit{D. Yang}, Comput. Math. Appl. 77, No. 7, 1841--1863 (2019; Zbl 1442.65153) Full Text: DOI OpenURL
Wei, Xiaofei; Cao, Wenjuan The existence of solutions for a class of second-order \(m\)-point boundary value problems. (Chinese. English summary) Zbl 1449.34061 Math. Pract. Theory 49, No. 20, 288-295 (2019). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{X. Wei} and \textit{W. Cao}, Math. Pract. Theory 49, No. 20, 288--295 (2019; Zbl 1449.34061) OpenURL
Boumenir, Amin; Tuan, Vu Kim A fractional inverse initial value problem. (English) Zbl 1444.35163 Singh, Vinai K. (ed.) et al., Advances in mathematical methods and high performance computing. Cham: Springer. Adv. Mech. Math. 41, 387-402 (2019). MSC: 35R30 35R11 35K20 PDF BibTeX XML Cite \textit{A. Boumenir} and \textit{V. K. Tuan}, Adv. Mech. Math. 41, 387--402 (2019; Zbl 1444.35163) Full Text: DOI OpenURL
Fayazova, Z. K. Boundary control of the heat transfer process in the space. (English. Russian original) Zbl 1447.93147 Russ. Math. 63, No. 12, 71-79 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 12, 82-90 (2019). MSC: 93C20 35K20 44A10 80A19 PDF BibTeX XML Cite \textit{Z. K. Fayazova}, Russ. Math. 63, No. 12, 71--79 (2019; Zbl 1447.93147); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 12, 82--90 (2019) Full Text: DOI OpenURL
Rossovskii, L. E.; Tovsultanov, A. A. On the Dirichlet problem for an elliptic functional differential equation with affine transformations of the argument. (English. Russian original) Zbl 1442.35103 Dokl. Math. 100, No. 3, 551-553 (2019); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 489, No. 4, 347-350 (2019). MSC: 35J25 PDF BibTeX XML Cite \textit{L. E. Rossovskii} and \textit{A. A. Tovsultanov}, Dokl. Math. 100, No. 3, 551--553 (2019; Zbl 1442.35103); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 489, No. 4, 347--350 (2019) Full Text: DOI OpenURL
Lissy, Pierre; Privat, Yannick; Simporé, Yacouba Insensitizing control for linear and semi-linear heat equations with partially unknown domain. (English) Zbl 1442.93009 ESAIM, Control Optim. Calc. Var. 25, Paper No. 50, 21 p. (2019). MSC: 93B05 35K20 35K91 49K20 93C20 PDF BibTeX XML Cite \textit{P. Lissy} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 50, 21 p. (2019; Zbl 1442.93009) Full Text: DOI HAL OpenURL
Correia, Simão; Figueira, Mário Some \(L^\infty\) solutions of the hyperbolic nonlinear Schrödinger equation and their stability. (English) Zbl 1437.35620 Adv. Differ. Equ. 24, No. 1-2, 1-30 (2019). MSC: 35Q55 35B35 35B06 35E99 35L70 35L65 35A01 35A02 PDF BibTeX XML Cite \textit{S. Correia} and \textit{M. Figueira}, Adv. Differ. Equ. 24, No. 1--2, 1--30 (2019; Zbl 1437.35620) Full Text: arXiv Euclid OpenURL
Baculikova, Blanka Oscillatory criteria for second order differential equations with several sublinear neutral terms. (English) Zbl 1437.34073 Opusc. Math. 39, No. 6, 753-763 (2019). MSC: 34K11 34K40 PDF BibTeX XML Cite \textit{B. Baculikova}, Opusc. Math. 39, No. 6, 753--763 (2019; Zbl 1437.34073) Full Text: DOI OpenURL
Astashova, I. V.; Filinovskiy, A. V. On properties of minimizers of a control problem with time-distributed functional related to parabolic equations. (English) Zbl 1442.35176 Opusc. Math. 39, No. 5, 595-609 (2019). MSC: 35K20 35Q93 35Q79 49J20 PDF BibTeX XML Cite \textit{I. V. Astashova} and \textit{A. V. Filinovskiy}, Opusc. Math. 39, No. 5, 595--609 (2019; Zbl 1442.35176) Full Text: DOI OpenURL
Džurina, Jozef; Jadlovská, Irena; Stavroulakis, Ioannis P. Oscillatory results for second-order noncanonical delay differential equations. (English) Zbl 1437.34075 Opusc. Math. 39, No. 4, 483-495 (2019). MSC: 34K11 34K06 PDF BibTeX XML Cite \textit{J. Džurina} et al., Opusc. Math. 39, No. 4, 483--495 (2019; Zbl 1437.34075) Full Text: DOI OpenURL
Astashova, I. V.; Lashin, D. A.; Filinovskiĭ, A. V. Control with point observation for a parabolic problem with convection. (English. Russian original) Zbl 1436.35221 Trans. Mosc. Math. Soc. 2019, 221-234 (2019); translation from Tr. Mosk. Mat. O.-va 80, No. 2, 259-274 (2019). MSC: 35K20 35Q93 49J20 93C20 PDF BibTeX XML Cite \textit{I. V. Astashova} et al., Trans. Mosc. Math. Soc. 2019, 221--234 (2019; Zbl 1436.35221); translation from Tr. Mosk. Mat. O.-va 80, No. 2, 259--274 (2019) Full Text: DOI OpenURL
Vabishchevich, Petr N. Computational identification of the lowest space-wise dependent coefficient of a parabolic equation. (English) Zbl 1481.65177 Appl. Math. Modelling 65, 361-376 (2019). MSC: 65M32 35R30 65M06 35K20 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Appl. Math. Modelling 65, 361--376 (2019; Zbl 1481.65177) Full Text: DOI arXiv OpenURL
Babich, M. V.; Slavyanov, S. Yu. Relations between second-order Fuchsian equations and first-order Fuchsian systems. (English. Russian original) Zbl 1454.34120 J. Math. Sci., New York 240, No. 5, 646-650 (2019); translation from Zap. Nauchn. Semin. POMI 468, 221-227 (2018). Reviewer: Dmitry Sinelshchikov (Moskva) MSC: 34M35 34M55 PDF BibTeX XML Cite \textit{M. V. Babich} and \textit{S. Yu. Slavyanov}, J. Math. Sci., New York 240, No. 5, 646--650 (2019; Zbl 1454.34120); translation from Zap. Nauchn. Semin. POMI 468, 221--227 (2018) Full Text: DOI OpenURL
Foupouagnigni, Mama; Mboutngam, Salifou On the polynomial solution of divided-difference equations of the hypergeometric type on nonuniform lattices. (English) Zbl 1432.33016 Axioms 8, No. 2, Paper No. 47, 11 p. (2019). MSC: 33D45 39A13 PDF BibTeX XML Cite \textit{M. Foupouagnigni} and \textit{S. Mboutngam}, Axioms 8, No. 2, Paper No. 47, 11 p. (2019; Zbl 1432.33016) Full Text: DOI OpenURL
Li, Fushan; Xi, Shuai Dynamic properties of a nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions. I. (English. Russian original) Zbl 1435.35221 Math. Notes 106, No. 5, 814-832 (2019); translation from Mat. Zametki 106, No. 5, 761-783 (2019). MSC: 35L20 35L71 35R09 35B40 PDF BibTeX XML Cite \textit{F. Li} and \textit{S. Xi}, Math. Notes 106, No. 5, 814--832 (2019; Zbl 1435.35221); translation from Mat. Zametki 106, No. 5, 761--783 (2019) Full Text: DOI OpenURL
Giona, Massimiliano; Pucci, Luigi Hyperbolic heat/mass transport and stochastic modelling – three simple problems. (English) Zbl 1435.80005 Math. Eng. (Springfield) 1, No. 2, 224-251 (2019). MSC: 80A19 80A10 35L02 35L10 35Q79 82C70 82C35 35Q82 60H15 35R60 PDF BibTeX XML Cite \textit{M. Giona} and \textit{L. Pucci}, Math. Eng. (Springfield) 1, No. 2, 224--251 (2019; Zbl 1435.80005) Full Text: DOI OpenURL
Baculiková, Blanka Oscillatory behavior of the second order noncanonical differential equations. (English) Zbl 1449.34220 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 89, 11 p. (2019). MSC: 34K11 PDF BibTeX XML Cite \textit{B. Baculiková}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 89, 11 p. (2019; Zbl 1449.34220) Full Text: DOI OpenURL