Vargas Junior, Edson Cilos; da Luz, Cleverson Roberto \( \sigma \)-evolution models with low regular time-dependent effective structural damping. (English) Zbl 1460.35043 J. Math. Anal. Appl. 499, No. 2, Article ID 125030, 25 p. (2021). MSC: 35B40 35L15 35R11 PDF BibTeX XML Cite \textit{E. C. Vargas Junior} and \textit{C. R. da Luz}, J. Math. Anal. Appl. 499, No. 2, Article ID 125030, 25 p. (2021; Zbl 1460.35043) Full Text: DOI OpenURL
Jiang, Su Zhen; Wu, Yu Jiang Recovering a time-dependent potential function in a multi-term time fractional diffusion equation by using a nonlinear condition. (English) Zbl 1460.35390 J. Inverse Ill-Posed Probl. 29, No. 2, 233-248 (2021). MSC: 35R30 35R11 35R25 35K20 65M32 PDF BibTeX XML Cite \textit{S. Z. Jiang} and \textit{Y. J. Wu}, J. Inverse Ill-Posed Probl. 29, No. 2, 233--248 (2021; Zbl 1460.35390) Full Text: DOI OpenURL
Liu, Weijiu Boundary feedforward and feedback control for the exponential tracking of the unstable high-dimensional wave equation. (English) Zbl 1461.35147 J. Math. Anal. Appl. 499, No. 1, Article ID 125010, 15 p. (2021). Reviewer: Kaïs Ammari (Monastir) MSC: 35L20 35L05 35B40 93C20 93D15 PDF BibTeX XML Cite \textit{W. Liu}, J. Math. Anal. Appl. 499, No. 1, Article ID 125010, 15 p. (2021; Zbl 1461.35147) Full Text: DOI OpenURL
Wittbold, Petra; Wolejko, Patryk; Zacher, Rico Bounded weak solutions of time-fractional porous medium type and more general nonlinear and degenerate evolutionary integro-differential equations. (English) Zbl 1461.35215 J. Math. Anal. Appl. 499, No. 1, Article ID 125007, 20 p. (2021). MSC: 35R11 35R09 35K20 35K65 35K59 35D30 PDF BibTeX XML Cite \textit{P. Wittbold} et al., J. Math. Anal. Appl. 499, No. 1, Article ID 125007, 20 p. (2021; Zbl 1461.35215) Full Text: DOI arXiv OpenURL
Feng, Xiaomeng Solvability of the Neumann problem for complex hessian equations in balls. (English) Zbl 1460.32088 Complex Var. Elliptic Equ. 66, No. 3, 361-375 (2021). MSC: 32W50 35J25 35J60 PDF BibTeX XML Cite \textit{X. Feng}, Complex Var. Elliptic Equ. 66, No. 3, 361--375 (2021; Zbl 1460.32088) Full Text: DOI OpenURL
Alqahtani, Awatif; Jleli, Mohamed; Samet, Bessem Finite-time blow-up for inhomogeneous parabolic equations with nonlinear memory. (English) Zbl 1460.35051 Complex Var. Elliptic Equ. 66, No. 1, 84-93 (2021). MSC: 35B44 35K15 35K58 35R09 35B33 PDF BibTeX XML Cite \textit{A. Alqahtani} et al., Complex Var. Elliptic Equ. 66, No. 1, 84--93 (2021; Zbl 1460.35051) Full Text: DOI OpenURL
Ferone, Vincenzo; Volzone, Bruno Symmetrization for fractional elliptic problems: a direct approach. (English) Zbl 1473.35161 Arch. Ration. Mech. Anal. 239, No. 3, 1733-1770 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 35J25 35R11 PDF BibTeX XML Cite \textit{V. Ferone} and \textit{B. Volzone}, Arch. Ration. Mech. Anal. 239, No. 3, 1733--1770 (2021; Zbl 1473.35161) Full Text: DOI arXiv OpenURL
Bao, Ngoc Tran; Caraballo, Tomás; Tuan, Nguyen Huy; Zhou, Yong Existence and regularity results for terminal value problem for nonlinear fractional wave equations. (English) Zbl 1460.35368 Nonlinearity 34, No. 3, 1448-1502 (2021). MSC: 35R11 35L20 26A33 35B65 PDF BibTeX XML Cite \textit{N. T. Bao} et al., Nonlinearity 34, No. 3, 1448--1502 (2021; Zbl 1460.35368) Full Text: DOI arXiv OpenURL
Tang, H. S.; Li, L.; Grossberg, M.; Liu, Y. J.; Jia, Y. M.; Li, S. S.; Dong, W. B. An exploratory study on machine learning to couple numerical solutions of partial differential equations. (English) Zbl 1462.65217 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021). Reviewer: Chandrasekhar Salimath (Bengaluru) MSC: 65N55 65N06 68T07 35J05 35K20 PDF BibTeX XML Cite \textit{H. S. Tang} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105729, 11 p. (2021; Zbl 1462.65217) Full Text: DOI arXiv OpenURL
Kaltenbacher, Barbara; Rundell, William Some inverse problems for wave equations with fractional derivative attenuation. (English) Zbl 1459.35396 Inverse Probl. 37, No. 4, Article ID 045002, 28 p. (2021). MSC: 35R30 35L20 35R11 PDF BibTeX XML Cite \textit{B. Kaltenbacher} and \textit{W. Rundell}, Inverse Probl. 37, No. 4, Article ID 045002, 28 p. (2021; Zbl 1459.35396) Full Text: DOI OpenURL
Gong, Yuxuan; Li, Peijun; Wang, Xu; Xu, Xiang Numerical solution of an inverse random source problem for the time fractional diffusion equation via PhaseLift. (English) Zbl 1475.35432 Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021). Reviewer: Robert Plato (Siegen) MSC: 35R60 26A33 35A01 35A02 35R11 35R30 35R25 49M37 60G60 60H40 60J65 65M30 65M32 65T50 90C25 35K20 PDF BibTeX XML Cite \textit{Y. Gong} et al., Inverse Probl. 37, No. 4, Article ID 045001, 23 p. (2021; Zbl 1475.35432) Full Text: DOI arXiv OpenURL
Zaitseva, N. V. Classical solutions of hyperbolic differential-difference equations with several nonlocal terms. (English) Zbl 1459.35370 Lobachevskii J. Math. 42, No. 1, 231-236 (2021). MSC: 35R10 35L10 35A01 39A12 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Lobachevskii J. Math. 42, No. 1, 231--236 (2021; Zbl 1459.35370) Full Text: DOI OpenURL
Vabishchevich, P. N. An approximate representation of a solution to fractional elliptical BVP via solution of parabolic IVP. (English) Zbl 1466.65166 J. Comput. Appl. Math. 391, Article ID 113460, 13 p. (2021). MSC: 65N06 35J25 35R11 65F60 65D32 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 391, Article ID 113460, 13 p. (2021; Zbl 1466.65166) Full Text: DOI arXiv OpenURL
Kao, Chiu-Yen; Mohammadi, Seyyed Abbas Tuning the total displacement of membranes. (English) Zbl 1459.49002 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105706, 19 p. (2021). MSC: 49J20 35J05 35J20 74E30 PDF BibTeX XML Cite \textit{C.-Y. Kao} and \textit{S. A. Mohammadi}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105706, 19 p. (2021; Zbl 1459.49002) Full Text: DOI OpenURL
Wang, Hanxiao Extended backward stochastic Volterra integral equations, quasilinear parabolic equations, and Feynman-Kac formula. (English) Zbl 1470.60143 Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021). MSC: 60H05 60H20 45D05 35K40 35K59 PDF BibTeX XML Cite \textit{H. Wang}, Stoch. Dyn. 21, No. 1, Article ID 2150004, 37 p. (2021; Zbl 1470.60143) Full Text: DOI arXiv OpenURL
Kao, Chiu-Yen; Mohammadi, Seyyed Abbas Extremal rearrangement problems involving Poisson’s equation with Robin boundary conditions. (English) Zbl 1462.35422 J. Sci. Comput. 86, No. 3, Paper No. 40, 29 p. (2021). MSC: 35Q93 93C20 49J20 49Q10 35J20 35B40 74H15 74E30 PDF BibTeX XML Cite \textit{C.-Y. Kao} and \textit{S. A. Mohammadi}, J. Sci. Comput. 86, No. 3, Paper No. 40, 29 p. (2021; Zbl 1462.35422) Full Text: DOI OpenURL
Sun, Jian-Wen Lower bounds for some nonlocal dispersal equations. (English) Zbl 1459.35369 J. Math. Anal. Appl. 495, No. 2, Article ID 124781, 8 p. (2021). MSC: 35R09 35K15 35K05 PDF BibTeX XML Cite \textit{J.-W. Sun}, J. Math. Anal. Appl. 495, No. 2, Article ID 124781, 8 p. (2021; Zbl 1459.35369) Full Text: DOI OpenURL
León, Víctor; Scárdua, Bruno A geometric-analytic study of linear differential equations of order two. (English) Zbl 1462.34032 Electron Res. Arch. 29, No. 2, 2101-2127 (2021). Reviewer: Rodica Luca (Iaşi) MSC: 34A30 34A05 34A25 34A26 PDF BibTeX XML Cite \textit{V. León} and \textit{B. Scárdua}, Electron Res. Arch. 29, No. 2, 2101--2127 (2021; Zbl 1462.34032) Full Text: DOI OpenURL
Horodets’kyi, V. V.; Martynyuk, O. V. Approximate solutions of one abstract Cauchy problem. (English. Russian original) Zbl 1458.35278 J. Math. Sci., New York 253, No. 2, 230-241 (2021); translation from Neliniĭni Kolyvannya 22, No. 3, 341-349 (2019). MSC: 35L90 35L15 PDF BibTeX XML Cite \textit{V. V. Horodets'kyi} and \textit{O. V. Martynyuk}, J. Math. Sci., New York 253, No. 2, 230--241 (2021; Zbl 1458.35278); translation from Neliniĭni Kolyvannya 22, No. 3, 341--349 (2019) Full Text: DOI OpenURL
Huang, Weizhang; Kamenski, Lennard; Lang, Jens Conditioning of implicit Runge-Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. (English) Zbl 1456.65114 J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021). MSC: 65M60 65M06 65L06 65N30 65M50 65F08 65F10 65F35 65F15 35K10 PDF BibTeX XML Cite \textit{W. Huang} et al., J. Comput. Appl. Math. 387, Article ID 112497, 18 p. (2021; Zbl 1456.65114) Full Text: DOI arXiv OpenURL
Maia, L. A.; Raom, D.; Ruviaro, R.; Sobral, Y. D. Mini-max algorithm via Pohozaev manifold. (English) Zbl 1459.35114 Nonlinearity 34, No. 1, 642-668 (2021). MSC: 35J20 35J91 65N99 65N22 PDF BibTeX XML Cite \textit{L. A. Maia} et al., Nonlinearity 34, No. 1, 642--668 (2021; Zbl 1459.35114) Full Text: DOI arXiv OpenURL
Nunes, Ruikson S. O. Exact boundary controllability and energy decay for a system of wave equations linearly coupled. (English) Zbl 07302523 Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021). MSC: 35L52 35L53 35B40 35B45 93B05 49J20 PDF BibTeX XML Cite \textit{R. S. O. Nunes}, Mediterr. J. Math. 18, No. 1, Paper No. 30, 12 p. (2021; Zbl 07302523) Full Text: DOI OpenURL
Clapp, Mónica; Maia, Liliane A.; Pellacci, Benedetta Positive multipeak solutions to a zero mass problem in exterior domains. (English) Zbl 1460.35362 Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q99 35B09 35A15 35A01 35J20 PDF BibTeX XML Cite \textit{M. Clapp} et al., Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021; Zbl 1460.35362) Full Text: DOI arXiv OpenURL
Wang, Renhai; Wang, Bixiang Random dynamics of non-autonomous fractional stochastic \(p\)-Laplacian equations on \(\mathbb{R}^N\). (English) Zbl 1456.35246 Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021). MSC: 35R60 35R11 35K93 35K15 35B40 35B41 37L30 PDF BibTeX XML Cite \textit{R. Wang} and \textit{B. Wang}, Banach J. Math. Anal. 15, No. 1, Paper No. 19, 42 p. (2021; Zbl 1456.35246) Full Text: DOI OpenURL
Vildanova, V. F.; Mukminov, F. Kh. Existence of weak solutions of the aggregation equation with the \(p ( \cdot )\)-Laplacian. (English. Russian original) Zbl 1453.35109 J. Math. Sci., New York 252, No. 2, 156-167 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34-45 (2018). MSC: 35K20 35K92 35K65 35K61 35D30 35R09 PDF BibTeX XML Cite \textit{V. F. Vildanova} and \textit{F. Kh. Mukminov}, J. Math. Sci., New York 252, No. 2, 156--167 (2021; Zbl 1453.35109); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 152, 34--45 (2018) Full Text: DOI OpenURL
Zhang, Hui; Zhang, Fubao High energy semiclassical states for Kirchhoff problems with critical frequency. (English) Zbl 1453.35175 Appl. Math. Lett. 112, Article ID 106810, 6 p. (2021). MSC: 35R09 35J20 35J62 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{F. Zhang}, Appl. Math. Lett. 112, Article ID 106810, 6 p. (2021; Zbl 1453.35175) Full Text: DOI OpenURL
Zheng, Xiangcheng; Wang, Hong; Fu, Hongfei Analysis of a physically-relevant variable-order time-fractional reaction-diffusion model with Mittag-Leffler kernel. (English) Zbl 1453.35185 Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021). MSC: 35R11 35K20 35K57 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106804, 7 p. (2021; Zbl 1453.35185) Full Text: DOI OpenURL
Abbas, Saïd; Benchohra, Mouffak; N’Guérékata, Gaston M.; Zhou, Yong Periodic mild solutions of infinite delay second order evolution equations with impulses. (English) Zbl 1463.34289 Electron. J. Math. Anal. Appl. 9, No. 1, 179-190 (2021). MSC: 34K30 34K13 34K45 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Electron. J. Math. Anal. Appl. 9, No. 1, 179--190 (2021; Zbl 1463.34289) Full Text: Link OpenURL
Gao, Wei; Senel, Mine; Yel, Gulnur; Baskonus, Haci Mehmet; Senel, Bilgin New complex wave patterns to the electrical transmission line model arising in network system. (English) Zbl 07515702 AIMS Math. 5, No. 3, 1881-1892 (2020). MSC: 35L71 35A24 PDF BibTeX XML Cite \textit{W. Gao} et al., AIMS Math. 5, No. 3, 1881--1892 (2020; Zbl 07515702) Full Text: DOI OpenURL
Abdellaoui, Boumediene; Peral, Ireneo; Primo, Ana A note on the Fujita exponent in fractional heat equation involving the Hardy potential. (English) Zbl 07511717 Math. Eng. (Springfield) 2, No. 4, 639-656 (2020). MSC: 35B33 35B44 35K15 35K67 35R11 PDF BibTeX XML Cite \textit{B. Abdellaoui} et al., Math. Eng. (Springfield) 2, No. 4, 639--656 (2020; Zbl 07511717) Full Text: DOI OpenURL
Cheng, Jiazhuo; Fang, Shaomei Well-posedness of the solution of the fractional semilinear pseudo-parabolic equation. (English) Zbl 07509772 Bound. Value Probl. 2020, Paper No. 137, 16 p. (2020). MSC: 35B40 35K15 35K70 35R11 PDF BibTeX XML Cite \textit{J. Cheng} and \textit{S. Fang}, Bound. Value Probl. 2020, Paper No. 137, 16 p. (2020; Zbl 07509772) Full Text: DOI OpenURL
Eltayeb, Hassan; Bachar, Imed A note on singular two-dimensional fractional coupled Burgers’ equation and triple Laplace Adomian decomposition method. (English) Zbl 07509764 Bound. Value Probl. 2020, Paper No. 129, 17 p. (2020). MSC: 35C05 35K45 35K58 35R11 26A33 44A10 PDF BibTeX XML Cite \textit{H. Eltayeb} and \textit{I. Bachar}, Bound. Value Probl. 2020, Paper No. 129, 17 p. (2020; Zbl 07509764) Full Text: DOI OpenURL
Han, Yaling; Zhang, Yimin Existence of ground state for fractional Kirchhoff equation with \(L^2\) critical exponents. (English) Zbl 07509760 Bound. Value Probl. 2020, Paper No. 125, 15 p. (2020). MSC: 35J60 35J20 35R11 35A15 35A01 PDF BibTeX XML Cite \textit{Y. Han} and \textit{Y. Zhang}, Bound. Value Probl. 2020, Paper No. 125, 15 p. (2020; Zbl 07509760) Full Text: DOI OpenURL
Yang, Hui; Fang, Shiyue; Liang, Fei; Li, Min A general stability result for second order stochastic quasilinear evolution equations with memory. (English) Zbl 07509697 Bound. Value Probl. 2020, Paper No. 62, 16 p. (2020). MSC: 60H15 35L05 35L70 PDF BibTeX XML Cite \textit{H. Yang} et al., Bound. Value Probl. 2020, Paper No. 62, 16 p. (2020; Zbl 07509697) Full Text: DOI OpenURL
Li, Feifan; Bi, Zhonghua; Yao, Shaowen; Xin, Yun Linear difference operator with multiple variable parameters and applications to second-order differential equations. (English) Zbl 07509657 Bound. Value Probl. 2020, Paper No. 8, 29 p. (2020). MSC: 34Bxx PDF BibTeX XML Cite \textit{F. Li} et al., Bound. Value Probl. 2020, Paper No. 8, 29 p. (2020; Zbl 07509657) Full Text: DOI OpenURL
El-Sayed, Ahmed; Hashem, Hind; Al-Issa, Shorouk Existence of solutions for an ordinary second-order hybrid functional differential equation. (English) Zbl 07490945 Adv. Difference Equ. 2020, Paper No. 296, 10 p. (2020). MSC: 34A38 PDF BibTeX XML Cite \textit{A. El-Sayed} et al., Adv. Difference Equ. 2020, Paper No. 296, 10 p. (2020; Zbl 07490945) Full Text: DOI OpenURL
Chen, Hongbin; Xu, Da; Cao, Jiliang; Zhou, Jun A formally second order BDF ADI difference scheme for the three-dimensional time-fractional heat equation. (English) Zbl 1480.65207 Int. J. Comput. Math. 97, No. 5, 1100-1117 (2020). MSC: 65M06 35R11 45K05 65D32 PDF BibTeX XML Cite \textit{H. Chen} et al., Int. J. Comput. Math. 97, No. 5, 1100--1117 (2020; Zbl 1480.65207) Full Text: DOI OpenURL
Moaaz, Osama; Elabbasy, Elmetwally M.; Qaraad, Belgees An improved approach for studying oscillation of generalized Emden-Fowler neutral differential equation. (English) Zbl 07460844 J. Inequal. Appl. 2020, Paper No. 69, 18 p. (2020). MSC: 34C10 34K11 PDF BibTeX XML Cite \textit{O. Moaaz} et al., J. Inequal. Appl. 2020, Paper No. 69, 18 p. (2020; Zbl 07460844) Full Text: DOI OpenURL
Ilie, M. Analytic solution for second-order fractional differential equations via HPM. (English) Zbl 07458918 J. Fract. Calc. Appl. 11, No. 1, 121-137 (2020). MSC: 26-XX PDF BibTeX XML Cite \textit{M. Ilie}, J. Fract. Calc. Appl. 11, No. 1, 121--137 (2020; Zbl 07458918) Full Text: Link OpenURL
Raza, Nauman; Arshed, Saima; Javid, Ahmad Optical solitons and stability analysis for the generalized second-order nonlinear Schrödinger equation in an optical fiber. (English) Zbl 07446878 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7-8, 855-863 (2020). MSC: 78-XX 35-XX PDF BibTeX XML Cite \textit{N. Raza} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7--8, 855--863 (2020; Zbl 07446878) Full Text: DOI OpenURL
Surguladze, T. Viscoelastic rod vibration problem when constitutive relationship contain fractional derivative in Caputo sense. (English) Zbl 07441497 Appl. Math. Inform. Mech. 25, No. 1, 55-61 (2020). MSC: 35R11 26A33 35L20 74H45 74K10 PDF BibTeX XML Cite \textit{T. Surguladze}, Appl. Math. Inform. Mech. 25, No. 1, 55--61 (2020; Zbl 07441497) Full Text: Link OpenURL
Chen, Y.; Chen, Chang-Ming Novel numerical method of the fractional cable equation. (English) Zbl 07435276 J. Appl. Math. Comput. 62, No. 1-2, 663-683 (2020). MSC: 65Mxx 26A33 65M06 65M12 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{C.-M. Chen}, J. Appl. Math. Comput. 62, No. 1--2, 663--683 (2020; Zbl 07435276) Full Text: DOI OpenURL
Kumar, Devendra; Kumari, Parvin A parameter-uniform collocation scheme for singularly perturbed delay problems with integral boundary condition. (English) Zbl 07435120 J. Appl. Math. Comput. 63, No. 1-2, 813-828 (2020). MSC: 65-XX 35K20 65L10 65L11 65L70 65M12 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{P. Kumari}, J. Appl. Math. Comput. 63, No. 1--2, 813--828 (2020; Zbl 07435120) Full Text: DOI OpenURL
Zhang, Min; Liu, Yang; Li, Hong High-order local discontinuous Galerkin algorithm with time second-order schemes for the two-dimensional nonlinear fractional diffusion equation. (English) Zbl 1476.65261 Commun. Appl. Math. Comput. 2, No. 4, 613-640 (2020). MSC: 65M60 35R11 65M12 PDF BibTeX XML Cite \textit{M. Zhang} et al., Commun. Appl. Math. Comput. 2, No. 4, 613--640 (2020; Zbl 1476.65261) Full Text: DOI OpenURL
Kiguradze, Ivan On one Neumann type problem for second order linear differential equations. (English) Zbl 1474.34109 Trans. A. Razmadze Math. Inst. 174, No. 3, 413-417 (2020). MSC: 34B05 PDF BibTeX XML Cite \textit{I. Kiguradze}, Trans. A. Razmadze Math. Inst. 174, No. 3, 413--417 (2020; Zbl 1474.34109) Full Text: Link OpenURL
Zaitseva, N. V. On global classical solutions of hyperbolic differential-difference equations. (English. Russian original) Zbl 1477.35101 Dokl. Math. 101, No. 2, 115-116 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 44-46 (2020). MSC: 35L10 35R10 PDF BibTeX XML Cite \textit{N. V. Zaitseva}, Dokl. Math. 101, No. 2, 115--116 (2020; Zbl 1477.35101); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 44--46 (2020) Full Text: DOI OpenURL
Baev, A. D.; Chechin, D. A.; Zvereva, M. B.; Shabrov, S. A. Stieltjes differential in impulse nonlinear problems. (English. Russian original) Zbl 07424539 Dokl. Math. 101, No. 1, 5-8 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 490, 9-12 (2020). Reviewer: Jan Tomeček (Olomouc) MSC: 34B37 34A06 PDF BibTeX XML Cite \textit{A. D. Baev} et al., Dokl. Math. 101, No. 1, 5--8 (2020; Zbl 07424539); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 490, 9--12 (2020) Full Text: DOI OpenURL
Bodnarchuk, Iryna Averaging principle for a stochastic cable equation. (English) Zbl 1479.60123 Mod. Stoch., Theory Appl. 7, No. 4, 449-467 (2020). MSC: 60H15 35K10 60G57 PDF BibTeX XML Cite \textit{I. Bodnarchuk}, Mod. Stoch., Theory Appl. 7, No. 4, 449--467 (2020; Zbl 1479.60123) Full Text: DOI OpenURL
Knani, Habiba; Dozzi, Marco Linear backward stochastic differential equations with Gaussian Volterra processes. (English) Zbl 1476.35115 Mod. Stoch., Theory Appl. 7, No. 4, 415-433 (2020). MSC: 35K10 60G15 60G22 60H05 60H07 60H10 PDF BibTeX XML Cite \textit{H. Knani} and \textit{M. Dozzi}, Mod. Stoch., Theory Appl. 7, No. 4, 415--433 (2020; Zbl 1476.35115) Full Text: DOI arXiv OpenURL
Berjawi, S.; Ferapontov, E. V.; Kruglikov, B.; Novikov, V. Second-order PDEs in four dimensions with half-flat conformal structure. (English) Zbl 1472.35160 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2233, Article ID 20190642, 11 p. (2020). MSC: 35J60 PDF BibTeX XML Cite \textit{S. Berjawi} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2233, Article ID 20190642, 11 p. (2020; Zbl 1472.35160) Full Text: DOI arXiv Link OpenURL
Grace, S. R.; Jadlovska, I.; Zafer, A. Oscillatory behavior of \(n\)-th order nonlinear delay differential equations with a nonpositive neutral term. (English) Zbl 07416773 Hacet. J. Math. Stat. 49, No. 2, 766-776 (2020). MSC: 34K11 34C10 PDF BibTeX XML Cite \textit{S. R. Grace} et al., Hacet. J. Math. Stat. 49, No. 2, 766--776 (2020; Zbl 07416773) Full Text: DOI OpenURL
Li, Gang; Luan, Yue; Liu, Wenjun Well-posedness and exponential stability of a thermoelastic-Bresse system with second sound and delay. (English) Zbl 07416754 Hacet. J. Math. Stat. 49, No. 2, 523-538 (2020). MSC: 35L53 35L05 93C20 93D20 PDF BibTeX XML Cite \textit{G. Li} et al., Hacet. J. Math. Stat. 49, No. 2, 523--538 (2020; Zbl 07416754) Full Text: DOI OpenURL
Ho, Vu; Ngo, Hoa On initial value problem of random fractional differential equation with impulses. (English) Zbl 07415583 Hacet. J. Math. Stat. 49, No. 1, 282-293 (2020). MSC: 34A12 34A30 34D20 PDF BibTeX XML Cite \textit{V. Ho} and \textit{H. Ngo}, Hacet. J. Math. Stat. 49, No. 1, 282--293 (2020; Zbl 07415583) Full Text: DOI OpenURL
Wang, Fengru; Yang, Jerry Zhijian; Yuan, Cheng Practical absorbing boundary conditions for wave propagation on arbitrary domain. (English) Zbl 07409080 Adv. Appl. Math. Mech. 12, No. 6, 1384-1415 (2020). MSC: 35L15 62J07 35L05 35L20 65M99 PDF BibTeX XML Cite \textit{F. Wang} et al., Adv. Appl. Math. Mech. 12, No. 6, 1384--1415 (2020; Zbl 07409080) Full Text: DOI OpenURL
Ashyralyev, A.; Agirseven, D.; Agarwal, R. P. Stability estimates for delay parabolic differential and difference equations. (English) Zbl 1473.35617 Appl. Comput. Math. 19, No. 2, 175-204 (2020). MSC: 35R10 35K20 65M06 PDF BibTeX XML Cite \textit{A. Ashyralyev} et al., Appl. Comput. Math. 19, No. 2, 175--204 (2020; Zbl 1473.35617) Full Text: Link OpenURL
Shokri, Ali; Bahmani, Erfan Numerical solution of the 2D telegraph equation using direct meshless local Petrov-Galerkin (DMLPG) method. (Persian. English summary) Zbl 07389525 JAMM, J. Adv. Math. Model. 10, No. 2, 267-287 (2020). MSC: 65-XX 35L10 65M99 PDF BibTeX XML Cite \textit{A. Shokri} and \textit{E. Bahmani}, JAMM, J. Adv. Math. Model. 10, No. 2, 267--287 (2020; Zbl 07389525) Full Text: DOI OpenURL
Gorgisheli, Sveta; Mrevlishvili, Maia; Natroshvili, David Localized boundary-domain integro-differential equations approach for stationary heat transfer equation. (English) Zbl 1473.35146 Jaiani, George (ed.) et al., Applications of mathematics and informatics in natural sciences and engineering, AMINSE 2019. Selected papers based on the presentations at the 4th conference, Tbilisi, Georgia, September 23–26, 2019. Cham: Springer. Springer Proc. Math. Stat. 334, 205-226 (2020). MSC: 35J15 35J25 PDF BibTeX XML Cite \textit{S. Gorgisheli} et al., Springer Proc. Math. Stat. 334, 205--226 (2020; Zbl 1473.35146) Full Text: DOI OpenURL
Zhumaev, Zh. Zh. Multidimensional inverse problem of determining the kernel of the integro-differential heat equation in half space. (English) Zbl 07383876 Uzb. Math. J. 2020, No. 3, 163-174 (2020). MSC: 35A01 35A02 35L02 35L03 35R03 PDF BibTeX XML Cite \textit{Zh. Zh. Zhumaev}, Uzb. Math. J. 2020, No. 3, 163--174 (2020; Zbl 07383876) Full Text: DOI OpenURL
Rahmonov, A. A. Coefficient determination problem in the system of integro-differential equation for visco-elastic porous medium. (English) Zbl 07382373 Uzb. Math. J. 2020, No. 1, 102-115 (2020). MSC: 35L20 35R30 35Q99 PDF BibTeX XML Cite \textit{A. A. Rahmonov}, Uzb. Math. J. 2020, No. 1, 102--115 (2020; Zbl 07382373) Full Text: DOI OpenURL
Mardanov, M. J.; Guliyev, H. F.; Safarova, Z. R. The problem of starting control with two intermediate moments of observation in the boundary value problem for the hyperbolic equation. (English) Zbl 1469.93052 Optim. Control Appl. Methods 41, No. 5, 1773-1782 (2020). MSC: 93C20 49J20 35L10 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Optim. Control Appl. Methods 41, No. 5, 1773--1782 (2020; Zbl 1469.93052) Full Text: DOI OpenURL
Feng, Xiaoli; Li, Peijun; Wang, Xu An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion. (English) Zbl 1469.35251 Inverse Probl. 36, No. 4, Article ID 045008, 30 p. (2020). MSC: 35R30 35K20 35R11 35R60 65M32 PDF BibTeX XML Cite \textit{X. Feng} et al., Inverse Probl. 36, No. 4, Article ID 045008, 30 p. (2020; Zbl 1469.35251) Full Text: DOI arXiv OpenURL
Li, Zhaoxing; Deng, Zhiliang A total variation regularization method for an inverse problem of recovering an unknown diffusion coefficient in a parabolic equation. (English) Zbl 1475.65108 Inverse Probl. Sci. Eng. 28, No. 10, 1453-1473 (2020). MSC: 65M32 65M30 65H10 35B45 35A02 35B35 60H50 49J20 35K20 35R30 35R25 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Z. Deng}, Inverse Probl. Sci. Eng. 28, No. 10, 1453--1473 (2020; Zbl 1475.65108) Full Text: DOI OpenURL
Kokila, J.; Nair, M. T. Fourier truncation method for the non-homogeneous time fractional backward heat conduction problem. (English) Zbl 1466.35360 Inverse Probl. Sci. Eng. 28, No. 3, 402-426 (2020). MSC: 35R11 35R30 35R25 35K20 33E12 PDF BibTeX XML Cite \textit{J. Kokila} and \textit{M. T. Nair}, Inverse Probl. Sci. Eng. 28, No. 3, 402--426 (2020; Zbl 1466.35360) Full Text: DOI OpenURL
Alikulov, T. N. General solution of a second-order partial differential equation in a Banach space with potential singular on manifolds. (English. Russian original) Zbl 1466.35106 Russ. Math. 64, No. 10, 1-8 (2020); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 10, 3-11 (2020). MSC: 35J15 35A01 PDF BibTeX XML Cite \textit{T. N. Alikulov}, Russ. Math. 64, No. 10, 1--8 (2020; Zbl 1466.35106); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2020, No. 10, 3--11 (2020) Full Text: DOI OpenURL
Belhannache, Farida; Messaoudi, Salim A. On the general stability of a viscoelastic wave equation with an integral condition. (English) Zbl 1464.35020 Acta Math. Appl. Sin., Engl. Ser. 36, No. 4, 857-869 (2020). MSC: 35B35 35B40 35L20 35R09 PDF BibTeX XML Cite \textit{F. Belhannache} and \textit{S. A. Messaoudi}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 4, 857--869 (2020; Zbl 1464.35020) Full Text: DOI OpenURL
de Carvalho, Pitágoras Pinheiro; Fernández-Cara, Enrique; Ferrel, Juan Bautista Límaco On the computation of Nash and Pareto equilibria for some bi-objective control problems for the wave equation. (English) Zbl 1464.35010 Adv. Comput. Math. 46, No. 5, Paper No. 73, 30 p. (2020). MSC: 35A35 35L20 35Q93 49J20 90C29 65M06 65M60 PDF BibTeX XML Cite \textit{P. P. de Carvalho} et al., Adv. Comput. Math. 46, No. 5, Paper No. 73, 30 p. (2020; Zbl 1464.35010) Full Text: DOI OpenURL
Gao, Qiang; Zhou, Hengyu The area minimizing problem in conformal cones. II. (English) Zbl 1472.49065 Sci. China, Math. 63, No. 12, 2523-2552 (2020). Reviewer: Andrew Bucki (Edmond) MSC: 49Q20 53C21 53A10 35A01 35J25 PDF BibTeX XML Cite \textit{Q. Gao} and \textit{H. Zhou}, Sci. China, Math. 63, No. 12, 2523--2552 (2020; Zbl 1472.49065) Full Text: DOI OpenURL
Long, Wei; Yang, Jianfu; Yu, Weilin Nodal solutions for fractional Schrödinger-Poisson problems. (English) Zbl 1465.35180 Sci. China, Math. 63, No. 11, 2267-2286 (2020). MSC: 35J47 35J05 35J10 35R11 35A01 PDF BibTeX XML Cite \textit{W. Long} et al., Sci. China, Math. 63, No. 11, 2267--2286 (2020; Zbl 1465.35180) Full Text: DOI OpenURL
Garcia, Antonio; Llibre, Jaume Existence of periodic solutions for a class of second order ordinary differential equations. (English) Zbl 07341768 Acta Appl. Math. 169, 193-197 (2020). Reviewer: Manuel Zamora (Concepción) MSC: 34C25 34C29 34E10 37C60 PDF BibTeX XML Cite \textit{A. Garcia} and \textit{J. Llibre}, Acta Appl. Math. 169, 193--197 (2020; Zbl 07341768) Full Text: DOI Link OpenURL
Turner, John Wm. Echoes and glimpses of a distant drum. (English) Zbl 1468.35003 Opusc. Math. 40, No. 6, 737-750 (2020). MSC: 35-03 53-03 35B30 35J05 35J25 35P20 35R30 PDF BibTeX XML Cite \textit{J. Wm. Turner}, Opusc. Math. 40, No. 6, 737--750 (2020; Zbl 1468.35003) Full Text: DOI OpenURL
Calatayud Gregori, Julia; Cortés, Juan-Carlos; Jornet Sanz, Marc Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties. (English) Zbl 1466.34056 Stochastic Anal. Appl. 38, No. 5, 875-885 (2020). MSC: 34F05 34A30 34A12 60H10 PDF BibTeX XML Cite \textit{J. Calatayud Gregori} et al., Stochastic Anal. Appl. 38, No. 5, 875--885 (2020; Zbl 1466.34056) Full Text: DOI OpenURL
Zhang, Dan; Fu, Qin; Yu, Pengfei; Chen, Zhenjie Boundary control for a class of wave equations. (English) Zbl 1474.93112 J. Suzhou Univ. Sci. Technol., Nat. Sci. 37, No. 4, 19-24 (2020). MSC: 93C20 35L05 93B52 93D20 PDF BibTeX XML Cite \textit{D. Zhang} et al., J. Suzhou Univ. Sci. Technol., Nat. Sci. 37, No. 4, 19--24 (2020; Zbl 1474.93112) Full Text: DOI OpenURL
Xu, Ke; Shi, Hongwei; Bai, Yuzhen New oscillation criteria for second-order differential equation with a superlinear neutral term. (English) Zbl 1474.34458 J. Qufu Norm. Univ., Nat. Sci. 46, No. 4, 47-53 (2020). MSC: 34K11 34K40 34K07 PDF BibTeX XML Cite \textit{K. Xu} et al., J. Qufu Norm. Univ., Nat. Sci. 46, No. 4, 47--53 (2020; Zbl 1474.34458) Full Text: DOI OpenURL
Huang, Shoujun; Meng, Xiwang Improved ordinary differential inequality and its application to semilinear wave equations. (Chinese. English summary) Zbl 1474.34076 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 5, 1319-1332 (2020). MSC: 34A40 35B44 35L05 35L71 PDF BibTeX XML Cite \textit{S. Huang} and \textit{X. Meng}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 5, 1319--1332 (2020; Zbl 1474.34076) OpenURL
Krieger, Joachim On stability of type II blow up for the critical nonlinear wave equation on \(\mathbb R^{3+1}\). (English) Zbl 1471.35002 Memoirs of the American Mathematical Society 1301. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-4299-6/pbk; 978-1-4704-6401-1/ebook). v, 129 p. (2020). Reviewer: Chengbo Wang (Hangzhou) MSC: 35-02 35L71 35B35 35B40 35L15 35B36 35B20 35B44 PDF BibTeX XML Cite \textit{J. Krieger}, On stability of type II blow up for the critical nonlinear wave equation on \(\mathbb R^{3+1}\). Providence, RI: American Mathematical Society (AMS) (2020; Zbl 1471.35002) Full Text: DOI arXiv OpenURL
Li, Jingwei; Gao, Zhiming; Feng, Xinlong; He, Yinnian Method of order reduction for the high-dimensional convection-diffusion-reaction equation with Robin boundary conditions based on MQ RBF-FD. (English) Zbl 07336590 Int. J. Comput. Methods 17, No. 8, Article ID 1950058, 22 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Comput. Methods 17, No. 8, Article ID 1950058, 22 p. (2020; Zbl 07336590) Full Text: DOI OpenURL
Li, Zhiyuan; Cheng, Xing; Liu, Yikan Generic well-posedness for an inverse source problem for a multi-term time-fractional diffusion equation. (English) Zbl 1461.35236 Taiwanese J. Math. 24, No. 4, 1005-1020 (2020). MSC: 35R30 35R25 35R11 35K15 47A55 PDF BibTeX XML Cite \textit{Z. Li} et al., Taiwanese J. Math. 24, No. 4, 1005--1020 (2020; Zbl 1461.35236) Full Text: DOI Euclid OpenURL
Moosavi, Seyyedeh Roodabeh; Taghizadeh, Nasir; Manafian, Jalil Analytical approximations of one-dimensional hyperbolic equation with non-local integral conditions by reduced differential transform method. (English) Zbl 1474.35357 Comput. Methods Differ. Equ. 8, No. 3, 537-552 (2020). MSC: 35K15 35C05 35E15 PDF BibTeX XML Cite \textit{S. R. Moosavi} et al., Comput. Methods Differ. Equ. 8, No. 3, 537--552 (2020; Zbl 1474.35357) Full Text: DOI OpenURL
Su, Xiaofeng; Fu, Xianlong Approximate controllability of second-order semilinear evolution systems with state-dependent infinite delay. (English) Zbl 1461.93043 J. Appl. Anal. Comput. 10, No. 3, 1118-1148 (2020). MSC: 93B05 93C10 93C43 93C23 34K35 26A33 PDF BibTeX XML Cite \textit{X. Su} and \textit{X. Fu}, J. Appl. Anal. Comput. 10, No. 3, 1118--1148 (2020; Zbl 1461.93043) Full Text: DOI OpenURL
Grace, Said R.; Graef, John R.; Jadlovská, Irena Oscillatory behavior of second order nonlinear delay differential equations with positive and negative neutral terms. (English) Zbl 1457.34105 Differ. Equ. Appl. 12, No. 2, 201-211 (2020). MSC: 34K11 PDF BibTeX XML Cite \textit{S. R. Grace} et al., Differ. Equ. Appl. 12, No. 2, 201--211 (2020; Zbl 1457.34105) Full Text: DOI OpenURL
Gromyk, A. P.; Konet, I. M.; Pylypyuk, T. M. Parabolic boundary value problems in a piecewise homogeneous wedge-shaped solid cylinder. (Ukrainian. English summary) Zbl 1474.35359 Bukovyn. Mat. Zh. 8, No. 2, 40-55 (2020). MSC: 35K20 PDF BibTeX XML Cite \textit{A. P. Gromyk} et al., Bukovyn. Mat. Zh. 8, No. 2, 40--55 (2020; Zbl 1474.35359) Full Text: DOI OpenURL
Chepok, O. O. Asymptotic representations of solutions with slowly varying derivatives of the second order differential equations with the product of different types of nonlinearities. (English) Zbl 1474.34353 Bukovyn. Mat. Zh. 8, No. 1, 10-19 (2020). MSC: 34D05 34A34 37C60 26A12 PDF BibTeX XML Cite \textit{O. O. Chepok}, Bukovyn. Mat. Zh. 8, No. 1, 10--19 (2020; Zbl 1474.34353) Full Text: DOI OpenURL
Maz’ya, Vladimir G.; Verbitsky, Igor E. Accretivity and form boundedness of second order differential operators. (English) Zbl 1460.35099 Pure Appl. Funct. Anal. 5, No. 2, 391-406 (2020). MSC: 35J15 42B37 31B15 35J10 PDF BibTeX XML Cite \textit{V. G. Maz'ya} and \textit{I. E. Verbitsky}, Pure Appl. Funct. Anal. 5, No. 2, 391--406 (2020; Zbl 1460.35099) Full Text: arXiv Link OpenURL
Charão, Ruy Coimbra; Espinoza, Juan Torres; Ikehata, Ryo A second order fractional differential equation under effects of a super damping. (English) Zbl 1460.35370 Commun. Pure Appl. Anal. 19, No. 9, 4433-4454 (2020). MSC: 35R11 35L15 35B40 35B65 PDF BibTeX XML Cite \textit{R. C. Charão} et al., Commun. Pure Appl. Anal. 19, No. 9, 4433--4454 (2020; Zbl 1460.35370) Full Text: DOI OpenURL
He, Xiaoming; Zhao, Xin; Zou, Wenming Maximum principles for a fully nonlinear nonlocal equation on unbounded domains. (English) Zbl 1464.35113 Commun. Pure Appl. Anal. 19, No. 9, 4387-4399 (2020). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35J20 35R11 35S15 PDF BibTeX XML Cite \textit{X. He} et al., Commun. Pure Appl. Anal. 19, No. 9, 4387--4399 (2020; Zbl 1464.35113) Full Text: DOI OpenURL
Ernst, P. A.; Peskir, Goran; Zhou, Q. Optimal real-time detection of a drifting Brownian coordinate. (English) Zbl 1476.60078 Ann. Appl. Probab. 30, No. 3, 1032-1065 (2020). Reviewer: Krzysztof J. Szajowski (Wrocław) MSC: 60G40 60J65 60H30 35J15 45G10 62C10 PDF BibTeX XML Cite \textit{P. A. Ernst} et al., Ann. Appl. Probab. 30, No. 3, 1032--1065 (2020; Zbl 1476.60078) Full Text: DOI arXiv Euclid OpenURL
Charette, Laurent; Macdonald, Colin B.; Nagata, Wayne Pattern formation in a slowly flattening spherical cap: delayed bifurcation. (English) Zbl 1460.35032 IMA J. Appl. Math. 85, No. 4, 513-541 (2020). MSC: 35B36 35B32 35K57 35K20 37L10 PDF BibTeX XML Cite \textit{L. Charette} et al., IMA J. Appl. Math. 85, No. 4, 513--541 (2020; Zbl 1460.35032) Full Text: DOI arXiv OpenURL
Kanguzhin, Baltabek Esmatovich; Tulenov, Kanat Serikovich Singular perturbations of Laplace operator and their resolvents. (English) Zbl 1460.35082 Complex Var. Elliptic Equ. 65, No. 9, 1433-1444 (2020). MSC: 35J05 35J25 35P99 PDF BibTeX XML Cite \textit{B. E. Kanguzhin} and \textit{K. S. Tulenov}, Complex Var. Elliptic Equ. 65, No. 9, 1433--1444 (2020; Zbl 1460.35082) Full Text: DOI arXiv OpenURL
Changizi, M. Amin; Stiharu, Ion Structural static and vibration problems. (English) Zbl 07324120 Chakraverty, Snehashish (ed.), Mathematical methods in interdisciplinary sciences. Hoboken, NJ: John Wiley & Sons. 253-272 (2020). MSC: 74-XX 76-XX 80-XX PDF BibTeX XML Cite \textit{M. A. Changizi} and \textit{I. Stiharu}, in: Mathematical methods in interdisciplinary sciences. Hoboken, NJ: John Wiley \& Sons. 253--272 (2020; Zbl 07324120) Full Text: DOI OpenURL
Aili, Mohammed; Khemmoudj, Ammar General decay of energy for a viscoelastic wave equation with a distributed delay term in the nonlinear internal dambing. (English) Zbl 1459.35032 Rend. Circ. Mat. Palermo (2) 69, No. 3, 861-881 (2020). MSC: 35B40 35L20 35L72 35R09 74D05 74F05 93D15 26A51 PDF BibTeX XML Cite \textit{M. Aili} and \textit{A. Khemmoudj}, Rend. Circ. Mat. Palermo (2) 69, No. 3, 861--881 (2020; Zbl 1459.35032) Full Text: DOI OpenURL
Kharlamov, B. P. On some boundary property of Dirichlet operator family for the second order ordinary differential equation. (Russian. English summary) Zbl 07318959 Differ. Uravn. Protsessy Upr. 2020, No. 3, 163-180 (2020). MSC: 34B15 34A30 PDF BibTeX XML Cite \textit{B. P. Kharlamov}, Differ. Uravn. Protsessy Upr. 2020, No. 3, 163--180 (2020; Zbl 07318959) Full Text: Link OpenURL
Tian, Rongrong; Wei, Jinlong; Tang, Yanbin The second-order parabolic PDEs with singular coefficients and applications. (English) Zbl 1467.60052 Stochastic Anal. Appl. 38, No. 6, 1102-1121 (2020). Reviewer: Robert Neel (Bethlehem) MSC: 60H15 35K08 35B65 35R60 PDF BibTeX XML Cite \textit{R. Tian} et al., Stochastic Anal. Appl. 38, No. 6, 1102--1121 (2020; Zbl 1467.60052) Full Text: DOI OpenURL
Egger, Herbert; Kugler, Thomas; Liljegren-Sailer, Björn Stability preserving approximations of a semilinear hyperbolic gas transport model. (English) Zbl 1466.65129 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS). AIMS Ser. Appl. Math. 10, 427-433 (2020). MSC: 65M60 65M22 35L71 35L05 35A01 35A02 35R02 PDF BibTeX XML Cite \textit{H. Egger} et al., AIMS Ser. Appl. Math. 10, 427--433 (2020; Zbl 1466.65129) Full Text: arXiv OpenURL
Meng, Qing; He, Bin Bifurcation analysis and exact traveling wave solutions for a generic two-dimensional sine-Gordon equation in nonlinear optics. (English) Zbl 1455.34044 J. Appl. Anal. Comput. 10, No. 4, 1443-1463 (2020). MSC: 34C25 34C23 35C07 35L71 78A60 PDF BibTeX XML Cite \textit{Q. Meng} and \textit{B. He}, J. Appl. Anal. Comput. 10, No. 4, 1443--1463 (2020; Zbl 1455.34044) Full Text: DOI OpenURL
Kaushik, Aditya; Sharma, Nitika An adaptive difference scheme for parabolic delay differential equation with discontinuous coefficients and interior layers. (English) Zbl 1466.65065 J. Difference Equ. Appl. 26, No. 11-12, 1450-1470 (2020). MSC: 65M06 65M12 65M50 35B25 35K15 35R07 PDF BibTeX XML Cite \textit{A. Kaushik} and \textit{N. Sharma}, J. Difference Equ. Appl. 26, No. 11--12, 1450--1470 (2020; Zbl 1466.65065) Full Text: DOI OpenURL
Monticelli, Dario D.; Punzo, Fabio; Squassina, Marco Nonexistence for hyperbolic problems on Riemannian manifolds. (English) Zbl 1460.35364 Asymptotic Anal. 120, No. 1-2, 87-101 (2020). MSC: 35Q99 35L05 35L71 35B30 35B45 35A01 53C25 PDF BibTeX XML Cite \textit{D. D. Monticelli} et al., Asymptotic Anal. 120, No. 1--2, 87--101 (2020; Zbl 1460.35364) Full Text: DOI arXiv OpenURL
Kusuoka, Seiichiro Stochastic approach to bounds and regularity of fundamental solutions to non-divergence form parabolic equations with irregular coefficients. (English) Zbl 1458.35005 RIMS Kôkyûroku Bessatsu B80, 27-46 (2020). MSC: 35A08 35B65 35K10 60H30 35R60 PDF BibTeX XML Cite \textit{S. Kusuoka}, RIMS Kôkyûroku Bessatsu B80, 27--46 (2020; Zbl 1458.35005) Full Text: Link OpenURL
Roitenberg, V. Sh. On generic polinomial differential equations of second order on the circle. (Russian. English summary) Zbl 1464.34053 Sib. Èlektron. Mat. Izv. 17, 2122-2130 (2020). Reviewer: Alexander Grin (Grodno) MSC: 34C05 34D30 PDF BibTeX XML Cite \textit{V. Sh. Roitenberg}, Sib. Èlektron. Mat. Izv. 17, 2122--2130 (2020; Zbl 1464.34053) Full Text: DOI OpenURL
Džurina, Jozef; Jadlovská, Irena A sharp oscillation result for second-order half-linear noncanonical delay differential equations. (English) Zbl 1474.34440 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 46, 14 p. (2020). MSC: 34K11 PDF BibTeX XML Cite \textit{J. Džurina} and \textit{I. Jadlovská}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 46, 14 p. (2020; Zbl 1474.34440) Full Text: DOI OpenURL
Moroşanu, Gheorghe; Petruşel, Adrian Two-parameter second-order differential inclusions in Hilbert spaces. (English) Zbl 1474.34416 Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1-2, 274-294 (2020). MSC: 34G25 47H05 35K20 35L50 34E15 34B08 PDF BibTeX XML Cite \textit{G. Moroşanu} and \textit{A. Petruşel}, Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1--2, 274--294 (2020; Zbl 1474.34416) Full Text: Link OpenURL