×

Sea-ice dynamics on triangular grids. (English) Zbl 07511440

Summary: We present a discretization of the dynamics of sea-ice on triangular grids. Our numerical approach is based on the nonconforming Crouzeix-Raviart finite element. An advantage of this element is that it facilitates the coupling to an ocean model that employs an Arakawa C-type staggering of variables. We show that the Crouzeix-Raviart element implements a discretization of the viscous-plastic and elastic-viscous-plastic stress tensor that suffers from unacceptable small scale noise in the velocity field. To resolve this issue we introduce an edge-based stabilization of the Crouzeix-Raviart element. Through a blend of theoretical considerations, based on the Korn inequality, and numerical experiments we show that the stabilized Crouzeix-Raviart element provides a stable discretization of sea-ice dynamics on triangular grids that is relevant for sea-ice modelling in ocean and climate science.

MSC:

76-XX Fluid mechanics
86-XX Geophysics

Software:

MPAS-Ocean
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Acosta, G.; Apel, T.; Duran, R.; Lombardi, A., Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra, Math. Comput., 80, 141-163 (2011) · Zbl 1223.65086
[2] Adcroft, A.; Anderson, W.; Balaji, V.; Blanton, C.; Bushuk, M.; Dufour, C. O.; Dunne, J. P.; Griffies, S. M.; Hallberg Harrison, M. J.R.; Held, I. M.; Jansen, M. F.; John, J. G.; Krasting, J. P.; Langenhorst, A. R.; Legg, S.; Liang, Z.; McHugh, C.; Radhakrishnan, A.; Reichl, B. G.; Rosati, T.; Samuels, B. L.; Shao, A.; Stouffer, R.; Winton, M.; Wittenberg, A. T.; Xiang, B.; Zadeh, N.; Zhang, R., The GFDL global ocean and sea ice model OM4.0: model description and simulation features, J. Adv. Model. Earth Syst., 11, 3167-3211 (2019)
[3] Bouillon, S.; Fichefet, T.; Legat, V.; Madec, G., The elastic-viscous-plastic method revisited, Ocean Model., 71, 2-12 (2013)
[4] Bouillon, S.; Morales Maqueda, M. A.; Legat, V.; Fichefet, T., An elastic viscous plastic sea ice model formulated on Arakawa B and C grids, Ocean Model., 27, 3, 174-184 (2009)
[5] Brenner, S., Korn’s inequalities for picewise H1 vector fields, Math. Comput., 73, 1067-1087 (2004) · Zbl 1055.65118
[6] Ciarlet, P. G., On Korn’s inequality, Chin. Ann. Math., 31, 607-618 (2010) · Zbl 1200.49039
[7] Connolley, W. M.; Gregory, J. M.; Hunke, E.; McLaren, A. J., On the consistent scaling of terms in the sea-ice dynamics equation, J. Phys. Oceanogr., 34, 7, 1776-1780 (2004)
[8] Coon, M. D., A review of AIDJEX modeling, (Sea Ice Processes and Models: Symposium Proceedings (1980), Univ. of Wash. Press: Univ. of Wash. Press Seattle), 12-27
[9] Danilov, S.; Wang, Q.; Timmermann, R.; Iakovlev, N.; Sidorenko, D.; Kimmritz, M.; Jung, T.; Schröter, J., Finite-Element Sea Ice Model (FESIM), version 2, Geosci. Model Dev., 8, 1747-1761 (2015)
[10] Evans, L. C., Partial Differential Equations (2010), American Mathematical Society · Zbl 1194.35001
[11] Falk, R., Nonconforming finite element methods for the equations of linear elasticity, Math. Comput., 57, 529-550 (1991) · Zbl 0747.73044
[12] Hansbo, P.; Larson, M., Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity, ESAIM, 37, 63-72 (2003) · Zbl 1137.65431
[13] Hibler, W. D., A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 815-846 (1979)
[14] Hunke, E. C., Viscous-plastic sea ice dynamics with the EVP model: linearization issues, J. Comp. Physiol., 170, 18-38 (2001) · Zbl 1030.74032
[15] Hunke, E. C.; Dukowicz, J. K., An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849-1867 (1997)
[16] Ip, C. F.; Hibler, W. D.; Flato, G. M., On the effect of rheology on seasonal sea-ice simulations, Ann. Glaciol., 15, 17-25 (1991)
[17] Kimmritz, M.; Danilov, S.; Losch, M., On the convergence of the modified elastic-viscous-plastic method for solving the sea ice momentum equation, J. Comp. Physiol., 296, 90-100 (2015) · Zbl 1352.86021
[18] Knobloch, P., On Korn’s inequality for nonconforming finite elements, Tech. Mech., 20, 375, 205-214 (2000)
[19] Knobloch, P., Influence of mesh dependent Korn’s inequality on the convergence of nonconforming finite element schemes, (Proceedings of Czech-Japanese Seminar in Applied Mathematics (2004)) · Zbl 1312.76029
[20] Koldunov, N.; Danilov, S.; Sidorenko, D.; Hutter, N.; Losch, M.; Goessling, H.; Rakowsky, N.; Scholz, P.; Sein, D.; Wang, Q.; Jung, T., Fast EVP solutions in a high-resolution sea ice model, J. Adv. Model. Earth Syst., 11, 5, 1269-1284 (2019)
[21] Korn, P., Formulation of an unstructured grid model for global ocean dynamics, J. Comp. Physiol., 339, 525-552 (2017) · Zbl 1380.65275
[22] Kreyscher, M.; Harder, M.; Lemke, P.; Flato, G.; Gregory, M., Results of the sea ice model intercomparison project: evaluation of sea ice rheology schemes for use in climate simulations, J. Geophys. Res., 105, 11299-11320 (2000)
[23] Lemieux, J. F.; Knoll, D.; Losch, M.; Girard, C., A second-order accurate in time IMplicit-EXplicit (IMEX) integration scheme for sea ice dynamics, J. Comp. Physiol., 263, 375-392 (2014) · Zbl 1349.86006
[24] Lemieux, J. F.; Tremblay, B., Numerical convergence of viscous-plastic sea ice models, J. Geophys. Res., 114, C5 (2009)
[25] Leppäranta, M., The Drift of Sea Ice (2011), Springer-Verlag: Springer-Verlag Berlin Heidelberg
[26] Lietaer, O.; Fichefet, T.; Legat, V., The effects of resolving the Canadian Arctic archipelago in a finite element sea ice model, Ocean Model., 24, 140-152 (2008)
[27] Losch, M.; Fuchs, A.; Lemieux, J. F.; Vanselow, A., A parallel Jacobian-free Newton-Krylov solver for a coupled sea ice-ocean model, J. Comp. Physiol., 257, 901-911 (2014) · Zbl 1349.86008
[28] Madec, G., NEMO Ocean Engine (2012), Institut Pierre-Simon: Institut Pierre-Simon Laplace (IPSL), France
[29] Mehlmann, C., Efficient numerical methods to solve the viscous-plastic sea ice model at high spatial resolutions (2019), Otto-Von-Guericke Universität Magdeburg, PhD thesis
[30] Mehlmann, C.; Richter, T., A modified global Newton solver for viscous-plastic sea ice models, Ocean Model., 116, 96-107 (2017)
[31] Mehlmann, C.; Richter, T., A goal oriented error estimator and mesh adaptivity for sea ice simulations, Ocean Model., 154, Article 101684 pp. (2020)
[32] Ringler, T.; Petersen, M.; Higdon, R. L.; Jacobsen, D.; Jones, P. W.; Maltrud, M., A multi-resolution approach to global ocean modelling, Ocean Model., 69, 211-232 (2013)
[33] Zhang, J.; Hibler, W. D., On an efficient numerical method for modeling sea ice dynamics, J. Geophys. Res., 102, 8691-8702 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.