×

Automated derivation of the conservation laws for nonlinear differential-difference equations. (English) Zbl 1286.34020

Summary: Based on Wu’s elimination method and “divide-and-conquer” strategy, the undetermined coefficient algorithm to construct polynomial form conservation laws for nonlinear differential-difference equations (DDEs) is improved. Furthermore, a Maple package named CLawDDEs, which can entirely automatically derive polynomial form conservation laws of nonlinear DDEs is presented. The effectiveness of CLawDDEs is demonstrated by application to different kinds of examples.

MSC:

34A33 Ordinary lattice differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
34-04 Software, source code, etc. for problems pertaining to ordinary differential equations
68T15 Theorem proving (deduction, resolution, etc.) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Eklund, Symbolic computation of conserved densities and fluxes for nonlinear system of differential-difference equations, Master of Science Thesis, Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, 2003.
[2] W. Hereman, P. J. Adams, H. L. Eklund, M. S. Hickman, and B. M. Herbst, Direct Methods and Symbolic Software for Conservation Laws of Nonlinear Equations, Advances in Nonlinear Waves and Symbolic Computation (ed. by Z. Yan), Nova Science Publishers, New York, 2008. · Zbl 1210.35164
[3] R. X. Yao and Z. B. Li, CONSLAW: A Maple package to construct the conservation laws for nonlinear evolution equations, Appl. Math. Comput., 2006, 173: 616–635. · Zbl 1090.65124 · doi:10.1016/j.amc.2005.04.049
[4] M. J. Ablowitz and P. A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge University Press, Cambridge, 1991. · Zbl 0762.35001
[5] I. M. Anderson, Introduction to the variational bicomplex, Contemp. Math., AMS, Providence, Rhode Island, 1992, 132: 51–73. · Zbl 0772.58013
[6] I. M. Anderson, The Variational Bicomplex, Department of Mathematics, Utah State University, Logan, Utah, 2004.
[7] I. S. Krasil’shchik and A. M. Vinogradov, Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, AMS, Providence, Rhode Island, 1998.
[8] P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd edition, Graduate Texts in Mathematics 107, Springer Verlag, New York, 1993. · Zbl 0785.58003
[9] S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications, Europ. J. Appl. Math, 2002, 13: 545–566. · Zbl 1034.35070
[10] S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations: Part II: General treatment, Europ. J. Appl. Math, 2002, 13: 567–585. · Zbl 1034.35071
[11] G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations, Applied Mathematical Sciences 154, Springer-Verlag, Berlin, 2002. · Zbl 1013.34004
[12] A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations, Comp. Phys. Comm., 2007, 176: 48–61. · Zbl 1196.34045 · doi:10.1016/j.cpc.2006.08.001
[13] A. B. Shabat and R. I. Yamilov, Symmetries of the nonlinear chains, Leningrad Math. J., 1991, 2: 377–400. · Zbl 0722.35006
[14] V. E. Adler, S. I. Svinolupov, and R. I. Yamilov, Multi-component Volterra and Toda type integrable equations, Phys. Lett. A, 1999, 254: 24–36. · Zbl 0983.37082 · doi:10.1016/S0375-9601(99)00087-0
[15] D. J. Zhang and D. Y. Chen, The conservation laws of some discrete soliton systems, Chaos, Solitons & Fractals, 2002, 14: 573–579. · Zbl 1067.37114 · doi:10.1016/S0960-0779(01)00238-7
[16] T. Wolf, A. Brand, and M. Mohammadzadeh, Computer algebra algorithms and routines for the computation of conservation laws and fixing of gauge in differential expressions, J. Symb. Comp., 1999, 27: 221–238. · Zbl 0919.65076 · doi:10.1006/jsco.1998.0250
[17] Ü. Göktas, W. H Hereman, and G. Erdmann, Computation of conserved densities for systems of nonlinear differential-difference equations, Phys. Lett. A, 1997, 236: 30–38. · Zbl 0969.35542 · doi:10.1016/S0375-9601(97)00750-0
[18] W. T. Wu, The Basic Principle of Mechanical Geometry Theorem Proving, Science Press, Beijing, 1984.
[19] W. T. Wu, Mathematics Mechanization, Science Press-Kluwer Academic Publishers, Beijing-Dordrecht-Boston-London, 2000. · Zbl 0987.68074
[20] W. T. Wu, On the foundation of algebraic differential geometry, Syst. Sci. Math Sci., 1989, 2(4): 289–312. · Zbl 0739.14001
[21] C. L. Temuer and Y. S. Bai, A new algorithmic theory for determining and classifying classical and non-classical symmetries of partial differential equations, Science China Press, 2010, 4: 331–348.
[22] C. L. Temuer and J. Pang, An algorithm for the complete symmetry classification of differential equations based on Wu’s method, J. Eng. Math, 2010, 66: 181–199. · Zbl 1204.35021 · doi:10.1007/s10665-009-9344-5
[23] Z. H. Yang and Y. C. Hon, A generalized coth-function method for exact solution of differentialdifference equation, Chaos, Solitons & Fractals, 2007, 33: 1694–1702. · Zbl 1153.35397 · doi:10.1016/j.chaos.2006.03.023
[24] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin, 1981. · Zbl 0465.70014
[25] T. R. Taha, A differential-difference equation for a KdV-MKdV equation, Maths. Comput. in Simul, 1993, 35: 509–512. · Zbl 0803.35133 · doi:10.1016/0378-4754(93)90069-7
[26] A. Ramani, B. Grammaticos, and K.M. Tamizhmani, An integrability test for differential-difference systems, Phys. A, 1992, 25: L883–L886. · Zbl 0757.34057 · doi:10.1088/0305-4470/25/14/004
[27] M. J. Ablowitz and J. F. Ladik, A nonlinear difference scheme and inverse scattering, Stud. Appl. Math, 1976, 55: 213–229. · Zbl 0338.35002
[28] X. L. Yong, X. Zeng, Z. Y. Zhang, and Y. F. Chen, Symbolic computation of Jacobi elliptic function solutions to nonlinear differential-difference equations, Computers and Mathematics with Applications, 2009, 57: 1107–1114. · Zbl 1186.33039 · doi:10.1016/j.camwa.2009.01.008
[29] M. Wadati, Transformation theories for nonlinear discrete systems, Prog. Theor. Phys. Suppl., 1976, 59: 36–63. · doi:10.1143/PTPS.59.36
[30] R. Hirota and M. Iwao, Time-Discretization of Soliton Equations//SIDE III-symmetries and integrability of difference equations, CRM Proceedings & Lecture Notes, 2000, 25. · Zbl 0961.35135
[31] D. Baldwin, Ü. Göktas, and W. Hereman, Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations, Comput. Phys. Comm., 2004, 162: 203–217. · Zbl 1196.68324 · doi:10.1016/j.cpc.2004.07.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.