Cheng, Dongya; Yang, Yang; Wang, Xinzhi Asymptotic finite-time ruin probabilities in a dependent bidimensional renewal risk model with subexponential claims. (English) Zbl 07309985 Japan J. Ind. Appl. Math. 37, No. 3, 657-675 (2020). MSC: 62P20 62G32 62E10 PDF BibTeX XML Cite \textit{D. Cheng} et al., Japan J. Ind. Appl. Math. 37, No. 3, 657--675 (2020; Zbl 07309985) Full Text: DOI
Delsing, G. A.; Mandjes, M. R. H.; Spreij, P. J. C.; Winands, E. M. M. Asymptotics and approximations of ruin probabilities for multivariate risk processes in a Markovian environment. (English) Zbl 1455.91217 Methodol. Comput. Appl. Probab. 22, No. 3, 927-948 (2020). MSC: 91G05 60G55 60J28 PDF BibTeX XML Cite \textit{G. A. Delsing} et al., Methodol. Comput. Appl. Probab. 22, No. 3, 927--948 (2020; Zbl 1455.91217) Full Text: DOI
Ragulina, Olena Simple approximations for the ruin probability in the risk model with stochastic premiums and a constant dividend strategy. (English) Zbl 07296193 Mod. Stoch., Theory Appl. 7, No. 3, 245-265 (2020). MSC: 91G05 PDF BibTeX XML Cite \textit{O. Ragulina}, Mod. Stoch., Theory Appl. 7, No. 3, 245--265 (2020; Zbl 07296193) Full Text: DOI
Santana, David J.; Rincón, Luis Approximations of the ruin probability in a discrete time risk model. (English) Zbl 07296192 Mod. Stoch., Theory Appl. 7, No. 3, 221-243 (2020). Reviewer: Emilia Di Lorenzo (Napoli) MSC: 91B05 PDF BibTeX XML Cite \textit{D. J. Santana} and \textit{L. Rincón}, Mod. Stoch., Theory Appl. 7, No. 3, 221--243 (2020; Zbl 07296192) Full Text: DOI
Deng, Yingchun; Li, Man; Huang, Ya; Zhou, Jieming On the analysis of ruin-related quantities in the nonhomogeneous compound Poisson risk model. (Chinese. English summary) Zbl 07294878 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 501-514 (2020). MSC: 62P05 91B05 60K05 PDF BibTeX XML Cite \textit{Y. Deng} et al., Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 501--514 (2020; Zbl 07294878)
Hägele, Miriam Precise asymptotics of ruin probabilities for a class of multivariate heavy-tailed distributions. (English) Zbl 07287566 Stat. Probab. Lett. 166, Article ID 108871, 8 p. (2020). MSC: 60G50 91G40 PDF BibTeX XML Cite \textit{M. Hägele}, Stat. Probab. Lett. 166, Article ID 108871, 8 p. (2020; Zbl 07287566) Full Text: DOI
Ji, Lanpeng On the cumulative parisian ruin of multi-dimensional Brownian motion risk models. (English) Zbl 1454.91196 Scand. Actuar. J. 2020, No. 9, 819-842 (2020). MSC: 91G05 60J70 PDF BibTeX XML Cite \textit{L. Ji}, Scand. Actuar. J. 2020, No. 9, 819--842 (2020; Zbl 1454.91196) Full Text: DOI
Jasnovidov, Grigori Approximation of ruin probability and ruin time in discrete Brownian risk models. (English) Zbl 1454.91193 Scand. Actuar. J. 2020, No. 8, 718-735 (2020). MSC: 91G05 60J70 PDF BibTeX XML Cite \textit{G. Jasnovidov}, Scand. Actuar. J. 2020, No. 8, 718--735 (2020; Zbl 1454.91193) Full Text: DOI
Ermoliev, Yu. M.; Norkin, V. I.; Norkin, B. V. Stochastic optimization models of actuarial mathematics. (English. Russian original) Zbl 1455.91219 Cybern. Syst. Anal. 56, No. 1, 58-67 (2020); translation from Kibern. Sist. Anal. 2020, No. 1, 70-81 (2020). Reviewer: Jonas Šiaulys (Vilnius) MSC: 91G05 93E20 90C15 PDF BibTeX XML Cite \textit{Yu. M. Ermoliev} et al., Cybern. Syst. Anal. 56, No. 1, 58--67 (2020; Zbl 1455.91219); translation from Kibern. Sist. Anal. 2020, No. 1, 70--81 (2020) Full Text: DOI
Aurzada, Frank; Buck, Micha Ruin probabilities in the Cramér-Lundberg model with temporarily negative capital. (English) Zbl 1452.91258 Eur. Actuar. J. 10, No. 1, 261-269 (2020). MSC: 91G05 PDF BibTeX XML Cite \textit{F. Aurzada} and \textit{M. Buck}, Eur. Actuar. J. 10, No. 1, 261--269 (2020; Zbl 1452.91258) Full Text: DOI
Zhang, Jinyuan; Peng, Jiangyan; Jing, Haojie Asymptotic and numerical simulation for ruin probabilities of a general discrete-time risk model. (Chinese. English summary) Zbl 07267384 Math. Pract. Theory 50, No. 5, 104-111 (2020). MSC: 91G05 PDF BibTeX XML Cite \textit{J. Zhang} et al., Math. Pract. Theory 50, No. 5, 104--111 (2020; Zbl 07267384)
Xiao, Hongmin; Wang, Zhankui Finite-time ruin probability of a bidimensional dependent risk model based on entrance process. (Chinese. English summary) Zbl 07266958 J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 38-44 (2020). MSC: 91G05 62P05 PDF BibTeX XML Cite \textit{H. Xiao} and \textit{Z. Wang}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 2, 38--44 (2020; Zbl 07266958) Full Text: DOI
Tang, Fengqin; Ding, Wenwen Approximation of the tail probabilities of loss process in a time dependent compound renewal risk model. (Chinese. English summary) Zbl 07266415 Appl. Math., Ser. A (Chin. Ed.) 35, No. 1, 11-20 (2020). MSC: 60K10 62P05 91G40 PDF BibTeX XML Cite \textit{F. Tang} and \textit{W. Ding}, Appl. Math., Ser. A (Chin. Ed.) 35, No. 1, 11--20 (2020; Zbl 07266415) Full Text: DOI
Spielmann, J.; Vostrikova, L. On the ruin problem with investment when the risky asset is a semimartingale. (English. Russian original) Zbl 07247826 Theory Probab. Appl. 65, No. 2, 249-269 (2020); translation from Teor. Veroyatn. Primen. 65, No. 2, 312-337 (2020). MSC: 60 93 PDF BibTeX XML Cite \textit{J. Spielmann} and \textit{L. Vostrikova}, Theory Probab. Appl. 65, No. 2, 249--269 (2020; Zbl 07247826); translation from Teor. Veroyatn. Primen. 65, No. 2, 312--337 (2020) Full Text: DOI
Akahori, Jirô; Constantinescu, Corina; Miyagi, Kei Itô calculus for Cramér-Lundberg model. (English) Zbl 1448.91251 JSIAM Lett. 12, 25-28 (2020). MSC: 91G05 60K10 60H30 PDF BibTeX XML Cite \textit{J. Akahori} et al., JSIAM Lett. 12, 25--28 (2020; Zbl 1448.91251) Full Text: DOI
Cheng, Zailei; Seol, Youngsoo Diffusion approximation of a risk model with non-stationary Hawkes arrivals of claims. (English) Zbl 1447.91038 Methodol. Comput. Appl. Probab. 22, No. 2, 555-571 (2020). MSC: 91B05 60F17 60G55 PDF BibTeX XML Cite \textit{Z. Cheng} and \textit{Y. Seol}, Methodol. Comput. Appl. Probab. 22, No. 2, 555--571 (2020; Zbl 1447.91038) Full Text: DOI
Yener, Haluk Proportional reinsurance and investment in multiple risky assets under borrowing constraint. (English) Zbl 1447.91153 Scand. Actuar. J. 2020, No. 5, 396-418 (2020). MSC: 91G05 93E20 PDF BibTeX XML Cite \textit{H. Yener}, Scand. Actuar. J. 2020, No. 5, 396--418 (2020; Zbl 1447.91153) Full Text: DOI
Landriault, David; Willmot, Gordon E. On series expansions for scale functions and other ruin-related quantities. (English) Zbl 1447.91142 Scand. Actuar. J. 2020, No. 4, 292-306 (2020). MSC: 91G05 60G51 PDF BibTeX XML Cite \textit{D. Landriault} and \textit{G. E. Willmot}, Scand. Actuar. J. 2020, No. 4, 292--306 (2020; Zbl 1447.91142) Full Text: DOI
Cohen, Asaf; Young, Virginia R. Rate of convergence of the probability of ruin in the Cramér-Lundberg model to its diffusion approximation. (English) Zbl 1447.91130 Insur. Math. Econ. 93, 333-340 (2020). MSC: 91G05 45J05 60J60 PDF BibTeX XML Cite \textit{A. Cohen} and \textit{V. R. Young}, Insur. Math. Econ. 93, 333--340 (2020; Zbl 1447.91130) Full Text: DOI
Liang, Xiaoqing; Liang, Zhibin; Young, Virginia R. Optimal reinsurance under the mean-variance premium principle to minimize the probability of ruin. (English) Zbl 1445.91054 Insur. Math. Econ. 92, 128-146 (2020). MSC: 91G05 93E20 PDF BibTeX XML Cite \textit{X. Liang} et al., Insur. Math. Econ. 92, 128--146 (2020; Zbl 1445.91054) Full Text: DOI
Kasumo, Christian; Kasozi, Juma; Kuznetsov, Dmitry Dividend maximization under a set ruin probability target in the presence of proportional and excess-of-loss reinsurance. (English) Zbl 1447.91141 Appl. Appl. Math. 15, No. 1, 13-37 (2020). MSC: 91G05 45D05 62P05 PDF BibTeX XML Cite \textit{C. Kasumo} et al., Appl. Appl. Math. 15, No. 1, 13--37 (2020; Zbl 1447.91141) Full Text: Link
Dȩbicki, Krzysztof; Hashorva, Enkelejd; Michna, Zbigniew Simultaneous ruin probability for two-dimensional Brownian risk model. (English) Zbl 07224248 J. Appl. Probab. 57, No. 2, 597-612 (2020). MSC: 60G15 60G70 91B05 PDF BibTeX XML Cite \textit{K. Dȩbicki} et al., J. Appl. Probab. 57, No. 2, 597--612 (2020; Zbl 07224248) Full Text: DOI
Cang, Yuquan; Yang, Yang; Shi, Xixi A note on the uniform asymptotic behavior of the finite-time ruin probability in a nonstandard renewal risk model. (English) Zbl 1443.62337 Lith. Math. J. 60, No. 2, 161-172 (2020). MSC: 62P05 62E20 62G32 91G70 91B05 PDF BibTeX XML Cite \textit{Y. Cang} et al., Lith. Math. J. 60, No. 2, 161--172 (2020; Zbl 1443.62337) Full Text: DOI
Borovkov, A. A. Boundary crossing problems for compound renewal processes. (English. Russian original) Zbl 1448.60176 Sib. Math. J. 61, No. 1, 21-46 (2020); translation from Sib. Mat. Zh. 61, No. 1, 29-59 (2020). MSC: 60K05 60F10 PDF BibTeX XML Cite \textit{A. A. Borovkov}, Sib. Math. J. 61, No. 1, 21--46 (2020; Zbl 1448.60176); translation from Sib. Mat. Zh. 61, No. 1, 29--59 (2020) Full Text: DOI
Guan, Chonghu A fully nonlinear free boundary problem for minimizing the ruin probability. (English) Zbl 1440.35348 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111924, 14 p. (2020). MSC: 35R35 35Q91 91B70 93E20 PDF BibTeX XML Cite \textit{C. Guan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111924, 14 p. (2020; Zbl 1440.35348) Full Text: DOI
Fu, Ke-Ang; Ni, Chang; Chen, Hao A particular bidimensional time-dependent renewal risk model with constant interest rates. (English) Zbl 1434.60254 Probab. Eng. Inf. Sci. 34, No. 2, 172-182 (2020). MSC: 60K10 60G44 91G05 PDF BibTeX XML Cite \textit{K.-A. Fu} et al., Probab. Eng. Inf. Sci. 34, No. 2, 172--182 (2020; Zbl 1434.60254) Full Text: DOI
Lotov, Vladimir Ivanovich On some inequalities in boundary crossing problems for random walks. (Russian. English summary) Zbl 1439.60044 Sib. Èlektron. Mat. Izv. 17, 661-671 (2020). MSC: 60G50 60E15 PDF BibTeX XML Cite \textit{V. I. Lotov}, Sib. Èlektron. Mat. Izv. 17, 661--671 (2020; Zbl 1439.60044) Full Text: DOI
Frostig, Esther; Keren-Pinhasik, Adva Parisian ruin with Erlang delay and a lower bankruptcy barrier. (English) Zbl 1437.91133 Methodol. Comput. Appl. Probab. 22, No. 1, 101-134 (2020). MSC: 91B05 60G51 44A10 PDF BibTeX XML Cite \textit{E. Frostig} and \textit{A. Keren-Pinhasik}, Methodol. Comput. Appl. Probab. 22, No. 1, 101--134 (2020; Zbl 1437.91133) Full Text: DOI
Xun, Baoyin; Wang, Kaiyong; Yuen, Kam C. The finite-time ruin probability of time-dependent risk model with stochastic return and Brownian perturbation. (English) Zbl 1437.62381 Japan J. Ind. Appl. Math. 37, No. 2, 507-525 (2020). MSC: 62P05 62E10 91B05 60G65 62G32 PDF BibTeX XML Cite \textit{B. Xun} et al., Japan J. Ind. Appl. Math. 37, No. 2, 507--525 (2020; Zbl 1437.62381) Full Text: DOI
Gatto, Riccardo Stochastic models in actuarial risk theory. A mathematical introduction. 2nd edition. (Stochastische Modelle der aktuariellen Risikotheorie. Eine mathematische Einführung.) (German) Zbl 1433.91002 Masterclass. Berlin: Springer Spektrum (ISBN 978-3-662-60923-1/pbk; 978-3-662-60924-8/ebook). x, 288 p. (2020). MSC: 91-01 91B70 62P05 60K10 60G70 91G05 PDF BibTeX XML Cite \textit{R. Gatto}, Stochastische Modelle der aktuariellen Risikotheorie. Eine mathematische Einführung. Berlin: Springer Spektrum (2020; Zbl 1433.91002) Full Text: DOI
Yuen, Fei Lung; Lee, Wing Yan; Fung, Derrick W. H. A cyclic approach on classical ruin model. (English) Zbl 1435.91166 Insur. Math. Econ. 91, 104-110 (2020). MSC: 91G05 PDF BibTeX XML Cite \textit{F. L. Yuen} et al., Insur. Math. Econ. 91, 104--110 (2020; Zbl 1435.91166) Full Text: DOI
Dong, Y.; Spielmann, Jerome Weak limits of random coefficient autoregressive processes and their application in ruin theory. (English) Zbl 1435.91147 Insur. Math. Econ. 91, 1-11 (2020). MSC: 91G05 60F17 60J60 PDF BibTeX XML Cite \textit{Y. Dong} and \textit{J. Spielmann}, Insur. Math. Econ. 91, 1--11 (2020; Zbl 1435.91147) Full Text: DOI
Liang, Xiaoqing; Young, Virginia R. Minimizing the probability of lifetime exponential Parisian ruin. (English) Zbl 1433.91159 J. Optim. Theory Appl. 184, No. 3, 1036-1064 (2020). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 91G10 93E20 49K10 PDF BibTeX XML Cite \textit{X. Liang} and \textit{V. R. Young}, J. Optim. Theory Appl. 184, No. 3, 1036--1064 (2020; Zbl 1433.91159) Full Text: DOI
Kumar, Arun; Leonenko, Nikolai; Pichler, Alois Fractional risk process in insurance. (English) Zbl 1435.91156 Math. Financ. Econ. 14, No. 1, 43-65 (2020). Reviewer: Jonas Šiaulys (Vilnius) MSC: 91G05 60G22 60K05 PDF BibTeX XML Cite \textit{A. Kumar} et al., Math. Financ. Econ. 14, No. 1, 43--65 (2020; Zbl 1435.91156) Full Text: DOI
Asmussen, Søren; Steffensen, Mogens Risk and insurance. A graduate text. (English) Zbl 1447.91001 Probability Theory and Stochastic Modelling 96. Cham: Springer (ISBN 978-3-030-35175-5/hbk; 978-3-030-35176-2/ebook). xv, 505 p. (2020). Reviewer: Emilia Di Lorenzo (Napoli) MSC: 91-01 60-01 91G05 91B05 60G70 PDF BibTeX XML Cite \textit{S. Asmussen} and \textit{M. Steffensen}, Risk and insurance. A graduate text. Cham: Springer (2020; Zbl 1447.91001) Full Text: DOI
Al Ghanim, Dalal; Loeffen, Ronnie; Watson, Alexander R. The equivalence of two tax processes. (English) Zbl 1431.91242 Insur. Math. Econ. 90, 1-6 (2020). MSC: 91B64 60G51 93E20 91G05 PDF BibTeX XML Cite \textit{D. Al Ghanim} et al., Insur. Math. Econ. 90, 1--6 (2020; Zbl 1431.91242) Full Text: DOI
Collevecchio, Andrea; Kious, Daniel; Sidoravicius, Vladas The branching-ruin number and the critical parameter of once-reinforced random walk on trees. (English) Zbl 1443.60044 Commun. Pure Appl. Math. 73, No. 1, 210-236 (2020). MSC: 60G50 60K35 60J80 60D05 82B43 PDF BibTeX XML Cite \textit{A. Collevecchio} et al., Commun. Pure Appl. Math. 73, No. 1, 210--236 (2020; Zbl 1443.60044) Full Text: DOI
You, Honglong; Guo, Junyi; Jiang, Jiancheng Interval estimation of the ruin probability in the classical compound Poisson risk model. (English) Zbl 07160702 Comput. Stat. Data Anal. 144, Article ID 106890, 15 p. (2020). MSC: 62 PDF BibTeX XML Cite \textit{H. You} et al., Comput. Stat. Data Anal. 144, Article ID 106890, 15 p. (2020; Zbl 07160702) Full Text: DOI
Dimitrova, Dimitrina S.; Ignatov, Zvetan G.; Kaishev, Vladimir K.; Tan, Senren On double-boundary non-crossing probability for a class of compound processes with applications. (English) Zbl 1430.90013 Eur. J. Oper. Res. 282, No. 2, 602-613 (2020). MSC: 90B05 60G17 65T50 PDF BibTeX XML Cite \textit{D. S. Dimitrova} et al., Eur. J. Oper. Res. 282, No. 2, 602--613 (2020; Zbl 1430.90013) Full Text: DOI
Tan, Ken Seng; Wei, Pengyu; Wei, Wei; Zhuang, Sheng Chao Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle. (English) Zbl 1431.91344 Eur. J. Oper. Res. 282, No. 1, 345-362 (2020). MSC: 91G05 91G10 PDF BibTeX XML Cite \textit{K. S. Tan} et al., Eur. J. Oper. Res. 282, No. 1, 345--362 (2020; Zbl 1431.91344) Full Text: DOI
Burnecki, Krzysztof; Teuerle, Marek A.; Wilkowska, Aleksandra De Vylder type approximation of the ruin probability for the insurer-reinsurer model. (English) Zbl 07276615 Math. Appl. (Warsaw) 47, No. 1, 5-24 (2019). MSC: 91G05 62P05 PDF BibTeX XML Cite \textit{K. Burnecki} et al., Math. Appl. (Warsaw) 47, No. 1, 5--24 (2019; Zbl 07276615) Full Text: DOI
Bi, Xiuchun; Zhang, Shuguang The finite-time ruin probability in a dependent random premium rates risk model. (Chinese. English summary) Zbl 07266302 Acta Math. Appl. Sin. 42, No. 3, 345-355 (2019). MSC: 62P05 91B05 62G32 60K05 PDF BibTeX XML Cite \textit{X. Bi} and \textit{S. Zhang}, Acta Math. Appl. Sin. 42, No. 3, 345--355 (2019; Zbl 07266302)
Yang, Long; Deng, Guohe; Yang, Li; Huang, Yuanmin A perturbed risk model with dependence based on a generalized Farlie-Gumbel-Morgenstern copula. (English) Zbl 1449.62243 Chin. J. Appl. Probab. Stat. 35, No. 4, 373-396 (2019). MSC: 62P05 91B05 PDF BibTeX XML Cite \textit{L. Yang} et al., Chin. J. Appl. Probab. Stat. 35, No. 4, 373--396 (2019; Zbl 1449.62243) Full Text: DOI
Baltazar-Larios, F.; Esparza, Luz Judith R. Bayesian estimation for the Markov-modulated diffusion risk model. (English) Zbl 1436.62486 Antoniano-Villalobos, Isadora (ed.) et al., Selected contributions on statistics and data science in Latin America. 33rd “Foro nacional de estadística” (FNE) and 13th “Congreso Latinoamericano de Sociedades de Estadística” (CLATSE), Guadalajara, Mexico, October 1–5, 2018. Cham: Springer. Springer Proc. Math. Stat. 301, 15-31 (2019). MSC: 62P05 62M02 62M05 60J74 91B05 PDF BibTeX XML Cite \textit{F. Baltazar-Larios} and \textit{L. J. R. Esparza}, Springer Proc. Math. Stat. 301, 15--31 (2019; Zbl 1436.62486) Full Text: DOI
Borovkov, A. A. Integro-local theorems in boundary crossing problems for compound renewal processes. (English. Russian original) Zbl 1450.60049 Sib. Math. J. 60, No. 6, 957-972 (2019); translation from Sib. Mat. Zh. 60, No. 6, 1229-1246 (2019). Reviewer: Hans Daduna (Hamburg) MSC: 60K15 60F10 68M20 PDF BibTeX XML Cite \textit{A. A. Borovkov}, Sib. Math. J. 60, No. 6, 957--972 (2019; Zbl 1450.60049); translation from Sib. Mat. Zh. 60, No. 6, 1229--1246 (2019) Full Text: DOI
Constantinescu, Corina D.; Kozubowski, Tomasz J.; Qian, Haoyu H. Probability of ruin in discrete insurance risk model with dependent Pareto claims. (English) Zbl 1439.62214 Depend. Model. 7, 215-233 (2019). MSC: 62P05 91B05 62E15 62G32 PDF BibTeX XML Cite \textit{C. D. Constantinescu} et al., Depend. Model. 7, 215--233 (2019; Zbl 1439.62214) Full Text: DOI
Bareche, Aicha; Cherfaoui, Mouloud Sensitivity of the stability bound for ruin probabilities to claim distributions. (English) Zbl 1437.91459 Methodol. Comput. Appl. Probab. 21, No. 4, 1259-1281 (2019). MSC: 91G70 91G05 62G32 PDF BibTeX XML Cite \textit{A. Bareche} and \textit{M. Cherfaoui}, Methodol. Comput. Appl. Probab. 21, No. 4, 1259--1281 (2019; Zbl 1437.91459) Full Text: DOI
Blanchet, Jose; Murthy, Karthyek Quantifying distributional model risk via optimal transport. (English) Zbl 1434.60113 Math. Oper. Res. 44, No. 2, 565-600 (2019). MSC: 60G07 60F99 62P05 PDF BibTeX XML Cite \textit{J. Blanchet} and \textit{K. Murthy}, Math. Oper. Res. 44, No. 2, 565--600 (2019; Zbl 1434.60113) Full Text: DOI
Su, Bihao; Li, Jingchao The joint distribution of ruin related quantities in the classical risk model. (Chinese. English summary) Zbl 1449.91037 J. Shenzhen Univ., Sci. Eng. 36, No. 4, 419-423 (2019). MSC: 91B05 60E05 PDF BibTeX XML Cite \textit{B. Su} and \textit{J. Li}, J. Shenzhen Univ., Sci. Eng. 36, No. 4, 419--423 (2019; Zbl 1449.91037) Full Text: DOI
Yang, Liping; Zhou, Wenxin Study on the influence of time to ruin and deficit at ruin on insurance company based on Erlang risk model. (Chinese. English summary) Zbl 1449.91112 J. Chongqing Norm. Univ., Nat. Sci. 36, No. 3, 91-97 (2019). MSC: 91G05 60E05 PDF BibTeX XML Cite \textit{L. Yang} and \textit{W. Zhou}, J. Chongqing Norm. Univ., Nat. Sci. 36, No. 3, 91--97 (2019; Zbl 1449.91112) Full Text: DOI
Mao, Yanzhu; Wang, Kaiyong Asymptotics of the finite-time ruin probability of a risk model with Brownian perturbation. (English) Zbl 1449.91036 J. Cent. China Norm. Univ., Nat. Sci. 53, No. 4, 487-490 (2019). MSC: 91B05 62P05 62G32 PDF BibTeX XML Cite \textit{Y. Mao} and \textit{K. Wang}, J. Cent. China Norm. Univ., Nat. Sci. 53, No. 4, 487--490 (2019; Zbl 1449.91036) Full Text: DOI
Geček Tuđen, Ivana Ruin probability for discrete risk processes. (English) Zbl 1449.60008 Stud. Sci. Math. Hung. 56, No. 4, 420-439 (2019). Reviewer: Ljuben Mutafchiev (Sofia) MSC: 60C05 60G50 60G20 91G05 PDF BibTeX XML Cite \textit{I. Geček Tuđen}, Stud. Sci. Math. Hung. 56, No. 4, 420--439 (2019; Zbl 1449.60008) Full Text: DOI
Meng, Hui; Liao, Pu; Siu, Tak Kuen Continuous-time optimal reinsurance strategy with nontrivial curved structures. (English) Zbl 1433.91141 Appl. Math. Comput. 363, Article ID 124585, 21 p. (2019). MSC: 91G05 49L20 93E20 91G10 62P05 PDF BibTeX XML Cite \textit{H. Meng} et al., Appl. Math. Comput. 363, Article ID 124585, 21 p. (2019; Zbl 1433.91141) Full Text: DOI
Tamturk, Muhsin; Utev, Sergey Optimal reinsurance via Dirac-Feynman approach. (English) Zbl 1429.91284 Methodol. Comput. Appl. Probab. 21, No. 2, 647-659 (2019). MSC: 91G05 62P05 58D30 PDF BibTeX XML Cite \textit{M. Tamturk} and \textit{S. Utev}, Methodol. Comput. Appl. Probab. 21, No. 2, 647--659 (2019; Zbl 1429.91284) Full Text: DOI
Dimitrova, Dimitrina S.; Ignatov, Zvetan G.; Kaishev, Vladimir K. Ruin and deficit under claim arrivals with the order statistics property. (English) Zbl 1427.91078 Methodol. Comput. Appl. Probab. 21, No. 2, 511-530 (2019). MSC: 91B05 60K30 60G55 60G51 91G05 PDF BibTeX XML Cite \textit{D. S. Dimitrova} et al., Methodol. Comput. Appl. Probab. 21, No. 2, 511--530 (2019; Zbl 1427.91078) Full Text: DOI
Goffard, Pierre-Olivier; Sarantsev, Andrey Exponential convergence rate of ruin probabilities for level-dependent Lévy-driven risk processes. (English) Zbl 1432.91099 J. Appl. Probab. 56, No. 4, 1244-1268 (2019). Reviewer: Hanspeter Schmidli (Köln) MSC: 91G05 60H10 60J60 60J76 PDF BibTeX XML Cite \textit{P.-O. Goffard} and \textit{A. Sarantsev}, J. Appl. Probab. 56, No. 4, 1244--1268 (2019; Zbl 1432.91099) Full Text: DOI arXiv
Cheliotis, Dimitris; Papadatos, Nickos On sequential maxima of exponential sample means, with an application to ruin probability. (English) Zbl 1448.60031 Electron. Commun. Probab. 24, Paper No. 74, 7 p. (2019). Reviewer: Noureddine Daili (Sétif) MSC: 60E05 91G05 60G70 PDF BibTeX XML Cite \textit{D. Cheliotis} and \textit{N. Papadatos}, Electron. Commun. Probab. 24, Paper No. 74, 7 p. (2019; Zbl 1448.60031) Full Text: DOI Euclid arXiv
Lazarova, Meglena D.; Minkova, Leda D. Non-central Pólya-Aeppli process and ruin probability. (English) Zbl 1438.60064 Ann. Acad. Rom. Sci., Math. Appl. 11, No. 2, 312-321 (2019). MSC: 60G51 62P05 PDF BibTeX XML Cite \textit{M. D. Lazarova} and \textit{L. D. Minkova}, Ann. Acad. Rom. Sci., Math. Appl. 11, No. 2, 312--321 (2019; Zbl 1438.60064) Full Text: Link
Kostadinova, Krasimira Y.; Lazarova, Meglena Risk models of order \(k\). (English) Zbl 1438.60114 Ann. Acad. Rom. Sci., Math. Appl. 11, No. 2, 259-273 (2019). MSC: 60K10 62P05 PDF BibTeX XML Cite \textit{K. Y. Kostadinova} and \textit{M. Lazarova}, Ann. Acad. Rom. Sci., Math. Appl. 11, No. 2, 259--273 (2019; Zbl 1438.60114) Full Text: Link
Chuarkham, Khanchit; Intarasit, Arthit; Riyapan, Pakwan Ruin probability for hypo-exponential claim in classical risk process with reinsurance. (English) Zbl 1428.91014 Adv. Differ. Equ. Control Process. 20, No. 1, 37-51 (2019). MSC: 91G05 62P05 PDF BibTeX XML Cite \textit{K. Chuarkham} et al., Adv. Differ. Equ. Control Process. 20, No. 1, 37--51 (2019; Zbl 1428.91014) Full Text: DOI
Ramsden, Lewis; Papaioannou, Apostolos D. On the time to ruin for a dependent delayed capital injection risk model. (English) Zbl 1429.91091 Appl. Math. Comput. 352, 119-135 (2019). MSC: 91B05 45B05 60G40 91G05 PDF BibTeX XML Cite \textit{L. Ramsden} and \textit{A. D. Papaioannou}, Appl. Math. Comput. 352, 119--135 (2019; Zbl 1429.91091) Full Text: DOI
Liang, Xiaoqing; Young, Virginia R. Minimizing the probability of lifetime ruin: two riskless assets with transaction costs. (English) Zbl 1429.49021 ASTIN Bull. 49, No. 3, 847-883 (2019). MSC: 49K10 49K20 49L20 91G10 PDF BibTeX XML Cite \textit{X. Liang} and \textit{V. R. Young}, ASTIN Bull. 49, No. 3, 847--883 (2019; Zbl 1429.49021) Full Text: DOI
Ragulina, Olena The risk model with stochastic premiums and a multi-layer dividend strategy. (English) Zbl 1427.91240 Mod. Stoch., Theory Appl. 6, No. 3, 285-309 (2019). MSC: 91G05 60K10 PDF BibTeX XML Cite \textit{O. Ragulina}, Mod. Stoch., Theory Appl. 6, No. 3, 285--309 (2019; Zbl 1427.91240) Full Text: DOI arXiv
Zhang, Ting; Li, Feng; Yang, Yang; Lin, Jinguan Asymptotics for tail probabilities of the sum and its maximum of extended negatively dependent and heavy-tailed random variables. (Chinese. English summary) Zbl 1438.62021 Chin. J. Appl. Probab. Stat. 35, No. 1, 39-50 (2019). MSC: 62E20 62P05 91B05 62G32 PDF BibTeX XML Cite \textit{T. Zhang} et al., Chin. J. Appl. Probab. Stat. 35, No. 1, 39--50 (2019; Zbl 1438.62021) Full Text: DOI
Zhang, Wanlu; Zhao, Xianghua On the Parisian ruin probability in a refracted Lévy process. (Chinese. English summary) Zbl 1438.91036 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 1, 184-199 (2019). MSC: 91B05 60G51 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{X. Zhao}, Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 1, 184--199 (2019; Zbl 1438.91036)
Constantinescu, Corina D.; Ramirez, Jorge M.; Zhu, Wei R. An application of fractional differential equations to risk theory. (English) Zbl 1432.91097 Finance Stoch. 23, No. 4, 1001-1024 (2019). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 91G05 60K05 26A33 PDF BibTeX XML Cite \textit{C. D. Constantinescu} et al., Finance Stoch. 23, No. 4, 1001--1024 (2019; Zbl 1432.91097) Full Text: DOI arXiv
Dȩbicki, Krzysztof; Liu, Peng The time of ultimate recovery in Gaussian risk model. (English) Zbl 07101833 Extremes 22, No. 3, 499-521 (2019). MSC: 60G15 60G70 60K25 PDF BibTeX XML Cite \textit{K. Dȩbicki} and \textit{P. Liu}, Extremes 22, No. 3, 499--521 (2019; Zbl 07101833) Full Text: DOI
Lin, Jianxi Second order tail approximation for the maxima of randomly weighted sums with applications to ruin theory and numerical examples. (English) Zbl 1427.62013 Stat. Probab. Lett. 153, 37-47 (2019). MSC: 62E20 60G50 62P05 62G32 91B05 PDF BibTeX XML Cite \textit{J. Lin}, Stat. Probab. Lett. 153, 37--47 (2019; Zbl 1427.62013) Full Text: DOI
Yang, Haizhong; Li, Jinzhu On asymptotic finite-time ruin probability of a renewal risk model with subexponential main claims and delayed claims. (English) Zbl 1427.62125 Stat. Probab. Lett. 149, 153-159 (2019). MSC: 62P05 91B05 60K10 PDF BibTeX XML Cite \textit{H. Yang} and \textit{J. Li}, Stat. Probab. Lett. 149, 153--159 (2019; Zbl 1427.62125) Full Text: DOI
Avram, F.; Banik, A. D.; Horvath, A. Ruin probabilities by Padé’s method: simple moments based mixed exponential approximations (Renyi, De Vylder, Cramér-Lundberg), and high precision approximations with both light and heavy tails. (English) Zbl 1422.91323 Eur. Actuar. J. 9, No. 1, 273-299 (2019). MSC: 91B30 60G51 62P05 PDF BibTeX XML Cite \textit{F. Avram} et al., Eur. Actuar. J. 9, No. 1, 273--299 (2019; Zbl 1422.91323) Full Text: DOI
Kartashov, M. V.; Golomozyĭ, V. V. Some inequalities for the risk function in the time and space nonhomogeneous Cramér-Lundberg risk model. (English. Ukrainian original) Zbl 1418.91244 Theory Probab. Math. Stat. 98, 243-254 (2019); translation from Teor. Jmovirn. Mat. Stat. 98, 228-238 (2018). MSC: 91B30 60J25 PDF BibTeX XML Cite \textit{M. V. Kartashov} and \textit{V. V. Golomozyĭ}, Theory Probab. Math. Stat. 98, 243--254 (2019; Zbl 1418.91244); translation from Teor. Jmovirn. Mat. Stat. 98, 228--238 (2018) Full Text: DOI
Ankirchner, Stefan; Blanchet-Scalliet, Christophette; Kazi-Tani, Nabil The de Vylder-Goovaerts conjecture holds within the diffusion limit. (English) Zbl 1415.60031 J. Appl. Probab. 56, No. 2, 546-557 (2019). MSC: 60F17 91B30 60B10 PDF BibTeX XML Cite \textit{S. Ankirchner} et al., J. Appl. Probab. 56, No. 2, 546--557 (2019; Zbl 1415.60031) Full Text: DOI
Butler, Ronald W. Asymptotic expansions and saddlepoint approximations using the analytic continuation of moment generating functions. (English) Zbl 1418.60010 J. Appl. Probab. 56, No. 1, 307-338 (2019). MSC: 60E10 41A60 PDF BibTeX XML Cite \textit{R. W. Butler}, J. Appl. Probab. 56, No. 1, 307--338 (2019; Zbl 1418.60010) Full Text: DOI
Gao, Qingwu; Zhuang, Jun; Huang, Zhongquan Asymptotics for a delay-claim risk model with diffusion, dependence structures and constant force of interest. (English) Zbl 1419.91363 J. Comput. Appl. Math. 353, 219-231 (2019). MSC: 91B30 62P05 62E20 60J60 PDF BibTeX XML Cite \textit{Q. Gao} et al., J. Comput. Appl. Math. 353, 219--231 (2019; Zbl 1419.91363) Full Text: DOI
Li, Danping; Young, Virginia R. Optimal reinsurance to minimize the discounted probability of ruin under ambiguity. (English) Zbl 1410.91274 Insur. Math. Econ. 87, 143-152 (2019). MSC: 91B30 90C15 35Q91 PDF BibTeX XML Cite \textit{D. Li} and \textit{V. R. Young}, Insur. Math. Econ. 87, 143--152 (2019; Zbl 1410.91274) Full Text: DOI
Chen, Yu; Chen, Dan; Gao, Wenxue Extensions of Breiman’s theorem of product of dependent random variables with applications to ruin theory. (English) Zbl 1431.62065 Commun. Math. Stat. 7, No. 1, 1-23 (2019). Reviewer: Thorsten Dickhaus (Berlin) MSC: 62E20 60G70 62H05 62P20 PDF BibTeX XML Cite \textit{Y. Chen} et al., Commun. Math. Stat. 7, No. 1, 1--23 (2019; Zbl 1431.62065) Full Text: DOI
Chen, Shumin; Liu, Yanchu; Weng, Chengguo Dynamic risk-sharing game and reinsurance contract design. (English) Zbl 1411.91270 Insur. Math. Econ. 86, 216-231 (2019). MSC: 91B30 91A15 93E20 PDF BibTeX XML Cite \textit{S. Chen} et al., Insur. Math. Econ. 86, 216--231 (2019; Zbl 1411.91270) Full Text: DOI
Tang, Qihe; Yang, Yang Interplay of insurance and financial risks in a stochastic environment. (English) Zbl 1411.91316 Scand. Actuar. J. 2019, No. 5, 432-451 (2019). MSC: 91B30 62P05 62E20 60E15 PDF BibTeX XML Cite \textit{Q. Tang} and \textit{Y. Yang}, Scand. Actuar. J. 2019, No. 5, 432--451 (2019; Zbl 1411.91316) Full Text: DOI
Barrieu, Pauline (ed.) Risk and stochastics. Ragnar Norberg. With an autobiography by Ragnar Norberg. (English) Zbl 1453.91004 Hackensack, NJ: World Scientific (ISBN 978-1-78634-194-5/hbk; 978-1-78634-196-9/ebook). cxxxvii, 180 p. (2019). Reviewer: Jonas Šiaulys (Vilnius) MSC: 91-06 60-06 91G05 91G45 91G70 62P05 60H10 60J70 60G40 00B15 00B30 PDF BibTeX XML Cite \textit{P. Barrieu} (ed.), Risk and stochastics. Ragnar Norberg. With an autobiography by Ragnar Norberg. Hackensack, NJ: World Scientific (2019; Zbl 1453.91004) Full Text: DOI
Lotov, V. I. Bounds for the probability to leave the interval. (English) Zbl 1407.60029 Stat. Probab. Lett. 145, 141-146 (2019). MSC: 60E15 PDF BibTeX XML Cite \textit{V. I. Lotov}, Stat. Probab. Lett. 145, 141--146 (2019; Zbl 1407.60029) Full Text: DOI
Delsing, G. A.; Mandjes, M. R. H.; Spreij, P. J. C.; Winands, E. M. M. An optimization approach to adaptive multi-dimensional capital management. (English) Zbl 1419.91355 Insur. Math. Econ. 84, 87-97 (2019). MSC: 91B30 62P05 62F15 PDF BibTeX XML Cite \textit{G. A. Delsing} et al., Insur. Math. Econ. 84, 87--97 (2019; Zbl 1419.91355) Full Text: DOI
Bladt, Mogens; Nielsen, Bo Friis; Peralta, Oscar Parisian types of ruin probabilities for a class of dependent risk-reserve processes. (English) Zbl 1418.91230 Scand. Actuar. J. 2019, No. 1, 32-61 (2019). MSC: 91B30 60G51 62P05 PDF BibTeX XML Cite \textit{M. Bladt} et al., Scand. Actuar. J. 2019, No. 1, 32--61 (2019; Zbl 1418.91230) Full Text: DOI
Chen, Yang; Yang, Yang; Jiang, Tao Uniform asymptotics for finite-time ruin probability of a bidimensional risk model. (English) Zbl 1416.91164 J. Math. Anal. Appl. 469, No. 2, 525-536 (2019). MSC: 91B30 62P05 60K10 PDF BibTeX XML Cite \textit{Y. Chen} et al., J. Math. Anal. Appl. 469, No. 2, 525--536 (2019; Zbl 1416.91164) Full Text: DOI
Zhao, Xianghua On a risk process driven by a subordinator with liquid reserves, credit and debit interest. (English) Zbl 1429.91338 Far East J. Appl. Math. 99, No. 3, 235-252 (2018). MSC: 91G40 91G70 60G44 PDF BibTeX XML Cite \textit{X. Zhao}, Far East J. Appl. Math. 99, No. 3, 235--252 (2018; Zbl 1429.91338) Full Text: DOI
Navickienė, Olga; Sprindys, Jonas; Šiaulys, Jonas Ruin probability for the bi-seasonal discrete time risk model with dependent claims. (English) Zbl 1425.91231 Mod. Stoch., Theory Appl. 6, No. 1, 133-144 (2019). MSC: 91B30 91B70 PDF BibTeX XML Cite \textit{O. Navickienė} et al., Mod. Stoch., Theory Appl. 6, No. 1, 133--144 (2018; Zbl 1425.91231) Full Text: DOI arXiv
Xiao, Hongmin; Xie, Lin The ruin probability of a renewal risk model based on entrance processes with pairwise quasi-asymptotically independence. (Chinese. English summary) Zbl 1438.91035 J. Lanzhou Univ., Nat. Sci. 54, No. 4, 509-516 (2018). MSC: 91B05 60K05 PDF BibTeX XML Cite \textit{H. Xiao} and \textit{L. Xie}, J. Lanzhou Univ., Nat. Sci. 54, No. 4, 509--516 (2018; Zbl 1438.91035) Full Text: DOI
Devolder, Pierre Solvency requirement for long term guarantee: risk measure versus probability of ruin. (English) Zbl 1422.91337 Eur. Actuar. J. 8, No. 1, Suppl., 9-24 (2018). MSC: 91B30 PDF BibTeX XML Cite \textit{P. Devolder}, Eur. Actuar. J. 8, No. 1, 9--24 (2018; Zbl 1422.91337) Full Text: DOI
Jin, Yansheng; Hou, Wenting Ruin probability for an extended risk model with constant interest force and delayed-claims. (Chinese. English summary) Zbl 1424.91055 J. Zhengzhou Univ., Nat. Sci. Ed. 50, No. 4, 45-49 (2018). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{Y. Jin} and \textit{W. Hou}, J. Zhengzhou Univ., Nat. Sci. Ed. 50, No. 4, 45--49 (2018; Zbl 1424.91055) Full Text: DOI
Chen, Lamei; Gao, Miaomiao; Wang, Kaiyong; Chen, Shurong Finite-time ruin probability of a compound risk model with dependent claim sizes. (Chinese. English summary) Zbl 1424.62174 J. Suzhou Univ. Sci. Technol., Nat. Sci. 35, No. 3, 12-17 (2018). MSC: 62P05 91B30 62G32 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Suzhou Univ. Sci. Technol., Nat. Sci. 35, No. 3, 12--17 (2018; Zbl 1424.62174) Full Text: DOI
Cui, Zhaolei; Yu, Changjun The asymptotics for the ruin probabilities of a risk model with delayed heavy-tailed claims. (Chinese. English summary) Zbl 1424.91053 Chin. J. Appl. Probab. Stat. 34, No. 4, 416-426 (2018). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{Z. Cui} and \textit{C. Yu}, Chin. J. Appl. Probab. Stat. 34, No. 4, 416--426 (2018; Zbl 1424.91053) Full Text: DOI
Liu, Xijun; Yu, Changjun Asymptotics for a type of randomly weighted sums and its application. (Chinese. English summary) Zbl 1424.62016 Chin. J. Appl. Probab. Stat. 34, No. 2, 145-155 (2018). MSC: 62E20 62P05 62G20 62G30 PDF BibTeX XML Cite \textit{X. Liu} and \textit{C. Yu}, Chin. J. Appl. Probab. Stat. 34, No. 2, 145--155 (2018; Zbl 1424.62016) Full Text: DOI
Sendova, Kristina; Minkova, Leda Poisson-logarithmic risk process and applications. (English) Zbl 1424.60065 C. R. Acad. Bulg. Sci. 71, No. 8, 1020-1028 (2018). Reviewer: Angela Slavova (Sofia) MSC: 60G51 62P05 PDF BibTeX XML Cite \textit{K. Sendova} and \textit{L. Minkova}, C. R. Acad. Bulg. Sci. 71, No. 8, 1020--1028 (2018; Zbl 1424.60065)
Cui, Zhaolei; Omey, Edward; Wang, Wenyuan; Wang, Yuebao Asymptotics of convolution with the semi-regular-variation tail and its application to risk. (English) Zbl 1417.60014 Extremes 21, No. 4, 509-532 (2018). MSC: 60E07 60F99 91B30 PDF BibTeX XML Cite \textit{Z. Cui} et al., Extremes 21, No. 4, 509--532 (2018; Zbl 1417.60014) Full Text: DOI arXiv
Wang, Kaiyong; Chen, Lamei; Yang, Yang; Gao, Miaomiao The finite-time ruin probability of a risk model with stochastic return and Brownian perturbation. (English) Zbl 1403.62194 Japan J. Ind. Appl. Math. 35, No. 3, 1173-1189 (2018). MSC: 62P05 62E10 91B30 PDF BibTeX XML Cite \textit{K. Wang} et al., Japan J. Ind. Appl. Math. 35, No. 3, 1173--1189 (2018; Zbl 1403.62194) Full Text: DOI
Panda, Gopinath; Banik, A. D.; Chaudhry, M. L. Computational analysis of the \(GI/G/1\) risk process using roots. (English) Zbl 1418.91253 Kar, Samarjit (ed.) et al., Operations research and optimization. FOTA 2016, Kolkata, India, November 24–26, 2016. Singapore: Springer. Springer Proc. Math. Stat. 225, 75-90 (2018). MSC: 91B30 90B22 PDF BibTeX XML Cite \textit{G. Panda} et al., Springer Proc. Math. Stat. 225, 75--90 (2018; Zbl 1418.91253) Full Text: DOI
Bai, Long; Dȩbicki, Krzysztof; Hashorva, Enkelejd; Ji, Lanpeng Extremes of threshold-dependent Gaussian processes. (English) Zbl 1402.60042 Sci. China, Math. 61, No. 11, 1971-2002 (2018). MSC: 60G15 60G70 PDF BibTeX XML Cite \textit{L. Bai} et al., Sci. China, Math. 61, No. 11, 1971--2002 (2018; Zbl 1402.60042) Full Text: DOI
Chen, Shumin; Hao, Zhifeng Optimal reinsurance-investment strategies for an insurance company with real estate investment. (Chinese. English summary) Zbl 1413.91037 Oper. Res. Trans. 22, No. 1, 129-141 (2018). MSC: 91B30 93E20 60G40 PDF BibTeX XML Cite \textit{S. Chen} and \textit{Z. Hao}, Oper. Res. Trans. 22, No. 1, 129--141 (2018; Zbl 1413.91037) Full Text: DOI
Li, Yuning; Zhang, Yi; Zhao, Jun Optimal capital allocation based on weighted-mean-variance principle. (Chinese. English summary) Zbl 1413.91048 Math. Appl. 31, No. 1, 12-18 (2018). MSC: 91B32 91B30 62H05 90C25 PDF BibTeX XML Cite \textit{Y. Li} et al., Math. Appl. 31, No. 1, 12--18 (2018; Zbl 1413.91048)
Ou, Hui; Huang, Ya; Zhou, Jieming Randomized dividends in the Markov-modulated Pascal model with stochastic interest rates. (Chinese. English summary) Zbl 1413.91041 J. Nat. Sci. Hunan Norm. Univ. 41, No. 1, 71-80 (2018). MSC: 91B30 91G30 60J20 PDF BibTeX XML Cite \textit{H. Ou} et al., J. Nat. Sci. Hunan Norm. Univ. 41, No. 1, 71--80 (2018; Zbl 1413.91041) Full Text: DOI
Niu, Yinju; Deng, Li; Ma, Chongwu The double-insurance risk model with perturbed dependence. (Chinese. English summary) Zbl 1413.91040 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 42, No. 2, 194-197 (2018). MSC: 91B30 PDF BibTeX XML Cite \textit{Y. Niu} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 42, No. 2, 194--197 (2018; Zbl 1413.91040) Full Text: DOI