×

Approximate confidence intervals for a linear combination of binomial proportions: a new variant. (English) Zbl 1385.62009

Summary: We propose a new adjustment for constructing an improved version of the Wald interval for linear combinations of binomial proportions, which addresses the presence of extremal samples. A comparative simulation study was carried out to investigate the performance of this new variant with respect to the exact coverage probability, expected interval length, and mesial and distal noncoverage probabilities. Additionally, we discuss the application of a criterion for interpreting interval location in the case of small samples and/or in situations in which extremal observations exist. The confidence intervals obtained from the new variant performed better for some evaluation measures.

MSC:

62F25 Parametric tolerance and confidence regions
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Agresti, A., Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. {\it The American Statistician} 54:280-288. · Zbl 1250.62016
[2] Agresti, A., Coull, B.A. (1998). Approximate is better than exact for interval estimation of binomial proportions. {\it The American Statistician} 52:119-126.
[3] Anbar, D. (1983). On estimating the difference between two proportions, with special reference to clinical trials. {\it Biometrics} 39:257-262.
[4] Blyth, C.R., Still, H. (1983). Binomial confidence intervals. {\it Journal of the American Statistical} 78(381):108-116. · Zbl 0503.62028
[5] Böhning, D., Viwatwongkasem, C. (2005). Revisiting proportion estimators. {\it Statistical Methods in Medical Research} 14:1-23. · Zbl 1122.62331
[6] Brown, L., Li, X. (2005). Confidence intervals for two sample binomial distribution. {\it Journal of Statistical Planning and Inference} 130:359-375. · Zbl 1087.62041
[7] Cohen, L., Kendall, E., Meschter, C., Rose, D. (1991). Modulation of n-nitrosomethylurea-induced mammary tumor promotion by dietary fiber and fat. {\it National Cancer Institute} 83:496-501.
[8] Decrouez, G., Robison, A.P. (2012). Confidence intervals for the weighted sum of two independent binomial proportions. {\it Australian & New Zealand Journal of Statistics} 54:281-299. · Zbl 1336.62101
[9] Fagerland, M.W., Lydersen, S., Laake, P. (2011). Recommended confidence intervals for two independent binomial proportions. {\it Statistical Methods in Medical Research} 0:1-31.
[10] Greenland, S. (2001). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. {\it American Statistician} 55:172-172.
[11] Haber, M. (1980). A comparison of some continuity corrections for the chi-squared test on 2×2 tables. {\it Journal of the American Statistical Association} 75:510-515. · Zbl 0455.62046
[12] Hlibczuk, V., Dattaro, J., Jin, Z., Falzon, L., Brown, M. (2010). Diagnostic accuracy of noncontrast computed tomography for appendicitis in adults: A systematic review. {\it Annals of Emergency Medicine} 55:51-59.
[13] Howe, W. G. (1974). Approximate confidence limits on the mean of {\it x} + {\it y} where {\it x} and {\it y} are two tabled independent random variables. {\it Journal of the American Statistical Association} 69:789-794. · Zbl 0291.62059
[14] Martín Andrés, A., Álvarez Hernández, M. (2013). Optimal method for realizing two-sided inferences about a linear combination of two proportions. {\it Communications in Statistics: Simulation and Computation} 42:327-343, DOI 10.1080/03610918.2011.650263. · Zbl 1266.62027
[15] Martín Andrés, A., Álvarez Hernández, M. (2014). Two-tailed asymptotic inferences for a proportion. {\it Journal of Applied Statistics} 41(7):1516-1529, DOI 10.1080/02664763.2014.881783. · Zbl 1514.62742
[16] Martín Andrés, A., Álvarez Hernández, M., Herranz Tejedor, I. (2011). Inferences about a linear combination of proportions. {\it Statistical Methods in Medical Research} 20:369-387, DOI 10.1177/0962280209347953, erratum in Statistical Methods in Medical Research 21(4), 427-428, (2012). DOI: 10.1177/0962280211423597. · Zbl 1414.62152
[17] Martín Andrés, A., Álvarez Hernández, M., Herranz Tejedor, I. (2012a). Asymptotic two-tailed confidence intervals for the difference of proportions. {\it Journal of Applied Statistics} 39(7):1423-1435, DOI 10.1080/02664763.2011.650686. · Zbl 1250.62017
[18] Martín Andrés, A., Herranz Tejedor, I., Álvarez Hernández, M. (2012b). The optimal method to make inferences about a linear combination of proportions. {\it Journal of Statistical Computation and Simulation} 82(1):123-135, DOI 10.1080/00949655.2010.530601. · Zbl 1431.62095
[19] Mee, R. W. (1984). Confidence bounds for the difference between two proportions. {\it Biometrics} 40:1175-1176.
[20] Miettinen, O., Nurminen, M. (1985). Comparative analysis of two rates. {\it Statistics in Medicine} 4:213-226.
[21] Newcombe, R. G. (1998a). Interval estimation for the difference between independent proportions: Comparison of eleven methods. {\it Statistics in Medicine} 17:873-890.
[22] Newcombe, R. G. (1998b). Two-sided confidence intervals for the single proportion: Comparison of seven methods. {\it Statistics in Medicine} 17:857-872.
[23] Newcombe, R. G. (2011). Measures of location for confidence intervals for proportions. {\it Communications in Statistics: Theory and Methods} 40:1743-1767. · Zbl 1277.62089
[24] Newcombe, R. G. (2013). {\it Confidence Intervals for Proportions and Related Measures of Effect Size}. Chapman & Hall: Taylor & Francis Group. · Zbl 1263.62089
[25] Newcombe, R. G., Nurminen, M. M. (2011). Defence of Score Intervals for Proportions and their Differences. {\it Communications in Statistics: Theory and Methods} 40:1271-1282. · Zbl 1270.62063
[26] Peskun, P. (1993). Construction of confidence limits about effect measures: A general approach. {\it Statistics in Medicine} 88:656-661. · Zbl 0773.62024
[27] Price, R. M., Bonett, D. G. (2004). An improved confidence interval for a linear function of binomial proportions. {\it Computational Statistics & Data Analysis} 45:449-456. · Zbl 1429.62102
[28] Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with application to problems of estimation. {\it Proceedings of the Cambridge Philosophical Society} 44:50-57. · Zbl 0034.07503
[29] Tebbs, J. M., Roths, S. A. (2008). New large-sample confidence intervals for a linear combination of binomial proportions. {\it Journal of Statistical Planning and Inference} 138:1884-1893. · Zbl 1131.62024
[30] Vollset, S. E. (1993). Confidence intervals for a binomial proportion. {\it Statistics in Medicine} 12:809-824.
[31] Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. {\it Transactions of the American Mathematical Society} 54:426-482. · Zbl 0063.08120
[32] Wilson, E. (1927). Probable inference, the law of succession, and statistical inference. {\it Journal of the American Statistical Association} 22:209-212.
[33] Zou, G. Y., Donner, A. (2008). Construction of confidence limits about effect measures: A general approach. {\it Statistics in Medicine} 27:1693-1702.
[34] Zou, G. Y., Huang, W., Zhang, X. (2009). A note on confidence interval estimation for a linear function of binomial proportions. {\it Computational Statistics and Data Analysis} 53:1080-1085. · Zbl 1452.62241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.