×

Uncovering the local inelastic interactions during manufacture of ductile cast iron: how the substructure of the graphite particles can induce residual stress concentrations in the matrix. (English) Zbl 1441.74085

Summary: Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.

MSC:

74G70 Stress concentrations, singularities in solid mechanics

Software:

DICTRA; HYPLAS
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] 47th Census of World Casting Production, 2013., MODERN CASTING - A Publication of the American Foundry Society.; 47th Census of World Casting Production, 2013., MODERN CASTING - A Publication of the American Foundry Society.
[2] Andersson, J.-O.; Helander, T.; Höglund, L.; Shi, P.; Sundman, B., Thermo-calc and DICTRA, computational tools for materials science, Calphad, 26, 273-312 (2002)
[3] Andriollo, T.; Hattel, J., On the isotropic elastic constants of graphite nodules in ductile cast iron: analytical and numerical micromechanical investigations, Mech. Mater., 96, 138-150 (2016)
[4] Andriollo, T.; Thorborg, J.; Hattel, J., Modeling the elastic behavior of ductile cast iron including anisotropy in the graphite nodules, Int. J. Solids Struct., 100-101, 523-535 (2016)
[5] Andriollo, T.; Thorborg, J.; Tiedje, N.; Hattel, J., A micro-mechanical analysis of thermo-elastic properties and local residual stresses in ductile iron based on a new anisotropic model for the graphite nodules, Model. Simul. Mater. Sci. Eng., 24, Article 055012 pp. (2016), 19pp
[6] Ashby, M.; Shercliff, H.; Cebon, D., Materials: Engineering, Science, Processing and Design (2010), Butterworth-Heinemann: Butterworth-Heinemann Oxford, UK
[7] Baer, W., Performance of Modern DCI Materials - Investigation of Microstructural, Temperature and Loading Rate Effects on Mechanical and Fracture Mechanical Properties, Mater. Sci. Forum, 783-786, 2244-2249 (2014)
[8] Baer, W.; Steglich, D.; Brocks, W.; Pusch, G.; Petit, J., Experimental determination and micromechanical modelling of damage in nodular cast iron, (Proceedings of the 11th European Conference on Fracture (ECF 11) (1996))
[9] Baimova, J. A.; Korznikova, E. A.; Dmitirev, S. V.; Liu, B.; Zhou, K., Wrinkles and wrinklons in graphene and graphene nanoribbons under strain, Curr. Nanosci., 12, 184-191 (2016)
[10] Baimova, J. A.; Liu, B.; Dmitriev, S. V.; Zhou, K., Mechanical properties of crumpled graphene under hydrostatic and uniaxial compression, J. Phys. D. Appl. Phys., 48, 95302 (2015)
[11] Barrett, C., On stress dependence of high-temperature creep, Trans. Metall. Soc. Aime, 239, 1726-1728 (1967)
[13] Berdin, C.; Dong, M. J.; Prioul, C., Local approach of damage and fracture toughness for nodular cast iron, Eng. Fract. Mech., 68, 1107-1117 (2001)
[15] Brown, S. G.R.; James, J. D.; Spittle, J. A., A 3D numerical model of the temperature - time characteristics of specimens tested on a Gleeble thermomechanical simulator, Model. Simul. Mater. Sci. Eng., 5, 539-548 (1997)
[16] Cockett, G. H.; Davis, C. D., The lattice expansion of Fe-Si alloys and the volume change at the A3 point, J. Iron Steel Inst., 201, 110-115 (1963)
[17] Collini, L.; Pirondi, A., Fatigue crack growth analysis in porous ductile cast iron microstructure, Int. J. Fatigue, 62, 258-265 (2014)
[18] Costa, N.; Machado, N.; Silva, F. S., A new method for prediction of nodular cast iron fatigue limit, Int. J. Fatigue, 32, 988-995 (2010)
[19] Davies, R. G., Steady-state creep in Fe-2 to 11 at. pct Si alloys, Trans. Metall. Soc. AIME, 227, 665-668 (1963)
[20] de Souza Neto, E.; Peric, D.; Owens, D. R.J., Computational Methods for Plasticity: Theory and Applications (2008), Wiley
[21] Di Cocco, V.; Iacoviello, F.; Cavallini, M., Damaging micromechanisms characterization of a ferritic ductile cast iron, Eng. Fract. Mech., 77, 2016-2023 (2010)
[22] Di Cocco, V.; Iacoviello, F.; Rossi, A.; Iacoviello, D., Macro and microscopical approach to the damaging micromechanisms analysis in a ferritic ductile cast iron, Theor. Appl. Fract. Mech., 69, 26-33 (2014)
[23] Di Cocco, V.; Iacoviello, F.; Rossi, a.; Cavallini, M.; Natali, S., Graphite nodules and fatigue crack propagation micromechanisms in a ferritic ductile cast iron, Fatigue Fract. Eng. Mater. Struct., 36, 893-902 (2013)
[24] Dong, M. J.; Tie, B.; Béranger, A. S.; Prioul, C.; François, D., Damage effect on the fracture toughness of nodular cast iron, Adv. Mater. Res., 4-5, 181-188 (1997)
[25] Ductile Iron Data for Design Engineers [WWW Document] (2013), (accessed 10.10.15)
[26] Faris, F. E.; Green, L.; Smith, C. A., The thermal dependence of the elastic moduli of polycrystalline graphite, J. Appl. Phys., 23, 89-95 (1952)
[27] Fernandino, D. O.; Boeri, R., Study of the fracture of ferritic ductile cast iron under different loading conditions, Fatigue Fract. Eng. Mater. Struct., 38, 610-620 (2015)
[28] Fernandino, D. O.; Cisilino, A. P.; Toro, S.; Sanchez, P. J., Multi-scale analysis of the early damage mechanics of ferritized ductile iron, Int. J. Fract. (2017)
[29] Freise, E.; Kelly, A., Twinning in graphite, Proc. R. Soc. Lond. Ser. A - Math. Phys. Sci., 264, 269-276 (1961)
[30] Greenstreet, W. L.; Smith, J. E.; Yahr, G. T., Mechanical properties of EGCR-type AGOT graphite, Carbon, 7, 15-45 (1969)
[31] Grimvall, G., Cast iron as a composite: conductivities and elastic properties, Adv. Mater. Res., 4-5, 31-46 (1997)
[32] Hacker, P. J.; Neighbour, G. B.; McEnaney, B., The coefficient of thermal expansion of nuclear graphite with increasing thermal oxidation, J. Phys. D. Appl. Phys., 33, 991-998 (2000)
[33] He, Z. R.; Lin, G. X.; Ji, S., A new understanding on the relation among microstructure micro interfacial mechanical behaviours and macro mechanical properties in cast iron, Mater. Sci. Eng. A, 234-236, 161-164 (1997)
[34] Hoffman, O., The brittle strength of orthotropic materials, J. Compos. Mater., 1, 200-206 (1967)
[35] Hütter, G.; Zybell, L.; Kuna, M., Micromechanisms of fracture in nodular cast iron: From experimental findings towards modeling strategies - a review, Eng. Fract. Mech., 144, 118-141 (2015)
[36] Hütter, G.; Zybell, L.; Kuna, M., Micromechanical modeling of crack propagation in nodular cast iron with competing ductile and cleavage failure, Eng. Fract. Mech., 147, 388-397 (2015)
[37] Iacoviello, F.; Di Bartolomeo, O.; Di Cocco, V.; Piacente, V., Damaging micromechanisms in ferritic-pearlitic ductile cast irons, Mater. Sci. Eng. A, 478, 181-186 (2008)
[38] Iacoviello, F.; Di Cocco, V., Influence of the graphite elements morphology on the fatigue crack propagation mechanisms in a ferritic ductile cast iron, Eng. Fract. Mech. (2016)
[39] Kaibyshev, R.; Kazakulov, I., Deformation behavior of Fe-3
[41] Lacaze, J.; Gerval, V., Modelling of the eutectoid reaction in spheroidal graphite Fe-C-Si alloys, ISIJ Int, 38, 714-722 (1998)
[42] Levine, L. E.; Okoro, C.; Xu, R., Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias, nt. Union Crystallogr. J., 2, 635-642 (2015)
[43] Loper, C. R., The origin of ductile iron - part I, Foundry Manag. Technol., 122, 32-34 (1994)
[44] MAGMA GmbH, 2017. MAGMA5 Simulation Software.; MAGMA GmbH, 2017. MAGMA5 Simulation Software.
[45] Malagari, F., Silicon steels and their applications, Met. Eng. Q., 13, 14-18 (1973)
[46] Merkle, J. G., An ellipsoidal yield function for materials that can both dilate and compact inelastically, Nucl. Eng. Des., 12, 425-451 (1970)
[47] Miao, B.; Fang, K.; Bian, W.; Liu, G., On the microstructure of graphite spherulites in cast irons by TEM and HREM, Acta Metall. Mater., 38, 2167-2174 (1990)
[49] Monchoux, J. P.; Verdu, C.; Thollet, G.; Fougères, R.; Reynaud, A., Morphological changes of graphite spheroids during heat treatment of ductile cast irons, Acta Mater., 49, 4355-4362 (2001)
[50] Electrical steels: past, present and future developments, IEE Proc. A (Phys. Sci. Meas. Instrum. Manag. Edu.), 137, 233-245 (1990)
[51] Moumeni, E.; Tiedje, N. S.; Grumsen, F. B.; Danielsen, H. K.; Horsewell, A.; Hattel, J. H., A TEM study on the Ti-alloyed grey iron, (TMS2014 Annual Meeting Supplemental Proceedings (2014), Minerals, Metals & Materials Society: Minerals, Metals & Materials Society San Diego, CA, USA), 943-950
[52] Moumeni, E.; Tiedje, N. S.; Horsewell, A.; Hattel, J. H., A TEM study on the microstructure of fine flaky graphite, (Proceedings of the 52nd International Foundry Conference (2012), Portoroz: Portoroz Slovenia)
[53] Mukherjee, A. K., An examination of the constitutive equation for elevated temperature plasticity, Mater. Sci. Eng. A, 322, 1-22 (2002)
[54] Peric, D., On a class of constitutive equations in viscoplasticity: formulation and computational issues, Int. J. Numer. Methods Eng., 36, 1365-1393 (1993) · Zbl 0815.73020
[55] Pina, J. C.; Kouznetsova, V. G.; Geers, M. G.D., Elevated temperature creep of pearlitic steels: an experimental-numerical approach, Mech. Time-Dependent Mater., 18, 611-631 (2014)
[56] Qin, H.; Sun, Y.; Liu, J. Z.; Liu, Y., Mechanical properties of wrinkled graphene generated by topological defects, Carbon, 108, 204-214 (2016)
[57] Rivera, G.; Boeri, R.; Sikora, J., Revealing and characterising solidification structure of ductile cast iron, Mater. Sci. Technol., 18, 691-697 (2002)
[58] Salomonsson, K.; Olofsson, J., Analysis of localized plastic strain in heterogeneous cast iron microstructures using 3d finite element simulations, (Mason, P.; Fisher, C. R.; Glamm, R.; Manuel, M. V.; Schmitz, G. J.; Singh, A. K.; Strachan, A., Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017) (2017), Springer International Publishing: Springer International Publishing Cham), 217-225
[59] Santos, T. Dos; Rossi, R., Calibration of Perzyna-type elasto-viscoplastic models from monotonic unidimensional testing at infinitesimal strains, (Del Prado, Z. J.G. N., Proceedings of the XXXIV Iberian Latin-American Congress on Computational Methods in Engineering (2013), Pirenópolis: Pirenópolis Brazil)
[60] Savini, G.; Dappe, Y. J.; Öberg, S.; Charlier, J. C.; Katsnelson, M. I.; Fasolino, A., Bending modes, elastic constants and mechanical stability of graphitic systems, Carbon, 49, 62-69 (2011)
[61] Schneibel, J.; Heilmaier, M., Hall-Petch breakdown at elevated temperatures, Mater. Trans., 55, 44-51 (2014)
[62] Selig, C.; Lacaze, A., Study of microsegregation buildup during solidification of spheroidal graphite cast iron, Metall. Mater. Trans. B, 31, 827-836 (2000)
[63] Shirani, M.; Härkegård, G., Large scale axial fatigue testing of ductile cast iron for heavy section wind turbine components, Eng. Fail. Anal., 18, 1496-1510 (2011)
[64] Sjögren, T.; Svensson, I. L., Modelling the effect of graphite morphology on the modulus of elasticity in cast irons, Int. J. Cast Met. Res., 17, 271-279 (2004)
[65] Smith, W. F.; Hashemi, J., Foundations of Materials Science and Engineering (2006), McGraw-Hill
[66] Sonne, M. R.; Thorborg, J.; Hattel, J. H., Modelling the effect of coating on the stresses and microstructure evolution in chill casting of wind turbine main shafts, Wind Energy (2017)
[67] Stang, R. G.; Nix, W. D.; Barrett, C. R., High temperature creep in Fe-3 pct Si, Metall. Trans., 4, 1695-1699 (1973)
[68] Stefanescu, D. M., Mechanical properties of ductile irons, (Stefanescu, D. M., ASM Handbook, 1A (2017), ASM International), 600, Cast Iron Science and Technology
[69] Stefanescu, D. M.; Alonso, G.; Larrañaga, P.; De la Fuente, E.; Suarez, R., On the crystallization of graphite from liquid iron-carbon-silicon melts, Acta Mater., 107, 102-126 (2016)
[70] Suits, J. C.; Chalmers, B., Plastic microstrain in silicon-iron, Acta Metall., 9, 854-860 (1961)
[71] The MathWorks, 2012. MATLAB R2012b.; The MathWorks, 2012. MATLAB R2012b.
[72] Theuwissen, K.; Lacaze, J.; Laffont, L., Structure of graphite precipitates in cast iron, Carbon, 96, 1120-1128 (2016)
[73] Theuwissen, K.; Lacaze, J.; Véron, M.; Laffont, L., Nano-scale orientation mapping of graphite in cast irons, Mater. Charact., 95, 187-191 (2014)
[74] Theuwissen, K.; Lafont, M.-C.; Laffont, L.; Viguier, B.; Lacaze, J., Microstructural characterization of graphite spheroids in ductile iron, Trans. Indian Inst. Met., 65, 627-631 (2012)
[75] Tiedje, N. S., Solidification, processing and properties of ductile cast iron, Mater. Sci. Technol., 26, 505-514 (2010)
[76] Tsang, D. K.L.; Marsden, B. J.; Fok, S. L.; Hall, G., Graphite thermal expansion relationship for different temperature ranges, Carbon, 43, 2902-2906 (2005)
[79] Walser, B.; Sherby, O. D., The Structure dependence of power law creep, Scr. Metall., 16, 213-219 (1982)
[82] Zhang, C.; Bellet, M.; Bobadilla, M.; Shen, H.; Liu, B., A coupled electrical-thermal-mechanical modeling of gleeble tensile tests for ultra-high-strength (UHS) steel at a high temperature, Metall. Mater. Trans. A, 41, 2304-2317 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.