×

A parallel Vlasov solver based on local cubic spline interpolation on patches. (English) Zbl 1171.76044

Summary: We present a method for computing the numerical solution of Vlasov-type equations on massively parallel computers. In contrast with particle-in-cell methods which are known to be noisy, the method is based on a semi-Lagrangian algorithm that approaches the Vlasov equation on a grid in phase space. As this method requires a huge computational effort, the simulations are carried out on parallel machines. To that purpose, we present a local cubic splines interpolation method based on a domain decomposition. Hermite boundary conditions between the domains, using ad hoc reconstruction of derivatives, provide a good approximation of the global solution. The method is applied to various physical configurations which show the ability of the numerical scheme.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76Y05 Quantum hydrodynamics and relativistic hydrodynamics

Software:

Vador; GYSELA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bermejo, R., Analysis of an algorithm for the Galerkin-characteristic method, Numer. Math., 60, 163-194 (1991) · Zbl 0723.65073
[2] Besse, N.; Sonnendrücker, E., Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space, J. Comput. Phys., 191, 341-376 (2003) · Zbl 1030.82011
[3] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation (1991), Institute of Physics Publishing: Institute of Physics Publishing Bristol and Philadelphia
[4] DeBoor, C., A Practical Guide to Splines (1978), Springer Verlag: Springer Verlag New York
[5] Cheng, C. Z.; Knorr, G., The integration of the Vlasov equation in configuration space, J. Comput. Phys., 22, 330 (1976)
[6] Cottet, G.-H.; Koumoutsakos, P., Vortex Methods - Theory and Practice (2000), Cambridge-University Press
[7] Coulaud, O.; Sonnendrücker, E.; Dillon, E.; Bertrand, P.; Ghizzo, A., Parallelization of semi-Lagrangian Vlasov codes, J. Plasma Phys., 61, 435-448 (1999)
[8] Crouseilles, N.; Latu, G.; Sonnendrücker, E., Hermite Spline interpolation on patches for parallelly solving of the Vlasov-Poisson equation, Int. J. Appl. Math. Comput. Sci., 17, 101-115 (2007) · Zbl 1159.65016
[9] Degond, P.; Raviart, P.-A., On the paraxial approximation of the stationary Vlasov-Maxwell system, Math. Mod. Meth. Appl. Sci., 3, 513-562 (1993) · Zbl 0787.35110
[10] M.R. Feix, P. Bertrand, A. Ghizzo, in: B. Perthame (Ed.), Series on Advances in Mathematics for Applied Science: Kinetic Theory and Computing, 1994.; M.R. Feix, P. Bertrand, A. Ghizzo, in: B. Perthame (Ed.), Series on Advances in Mathematics for Applied Science: Kinetic Theory and Computing, 1994. · Zbl 0863.76093
[11] Filbet, F.; Sonnendrücker, E.; Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172, 166-187 (2001) · Zbl 0998.65138
[12] Filbet, F.; Sonnendrücker, E., Comparison of Eulerian Vlasov solvers, Comput. Phys. Comm., 151, 247-266 (2003) · Zbl 1196.82108
[13] Filbet, F.; Sonnendrücker, E., Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Math. Mod. Meth. Appl. Sci., 16, 1-29 (2006) · Zbl 1109.78013
[14] F. Filbet, E. Violard, Parallelization of a Vlasov solver by communication overlapping, in: Proceedings PDPTA 2002, 2002.; F. Filbet, E. Violard, Parallelization of a Vlasov solver by communication overlapping, in: Proceedings PDPTA 2002, 2002.
[15] Ghizzo, A.; Bertrand, P.; Begue, M. L.; Johnston, T. W.; Shoucri, M., A Hilbert-Vlasov code for the study of high-frequency plasma beatwave accelerator, IEEE Trans. Plasma Sci., 24, 370 (1996)
[16] Ghizzo, A.; Bertrand, P.; Shoucri, M.; Johnston, T. W.; Filjakow, E.; Feix, M. R., A Vlasov code for the numerical simulation of stimulated Raman scattering, J. Comput. Phys., 90, 431-457 (1990) · Zbl 0702.76080
[17] Grandgirard, V.; Brunetti, M.; Bertrand, P.; Besse, N.; Garbet, X.; Ghendrih, P.; Manfredi, G.; Sarazin, Y.; Sauter, O.; Sonnendrücker, E.; Vaclavik, J.; Villard, L., A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217, 395-423 (2006) · Zbl 1160.76385
[18] V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse, P. Bertrand, A full-f global gyrokinetic semi-Lagrangian code for ITG turbulence simulations, in: Proceedings of Theory of Fusion Plasmas, Varenna, 2006.; V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse, P. Bertrand, A full-f global gyrokinetic semi-Lagrangian code for ITG turbulence simulations, in: Proceedings of Theory of Fusion Plasmas, Varenna, 2006. · Zbl 1129.35462
[19] Hämmerlin, G.; Hoffmann, K. H., Numerical Mathematics (1991), Springer Verlag: Springer Verlag New York
[20] Hockney, R. W.; Eastwood, S. W., Computer Simulation Using Particles (1988), Hilger Bristol: Hilger Bristol UK · Zbl 0662.76002
[21] Kim, C. C.; Parker, S. E., Massively parallel three-dimensional toroïdal gyrokinetic flux-tube turbulence simulation, J. Comput. Phys., 161, 589-604 (2000) · Zbl 0980.76058
[22] McKinstrie, C. J.; Giacone, R. E.; Startsev, E. A., Accurate formulas for the Landau damping rates of electrostatic waves, Phys. Plasmas, 6, 463-466 (1999)
[23] Klimas, A. J., A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions, J. Comput. Phys., 68, 202-226 (1987) · Zbl 0613.76130
[24] Latu, G.; Crouseilles, N.; Grandgirard, V.; Sonnendrücker, E., Gyrokinetic semi-Lagrangian parallel simulation using a Hybrid OpenMP/MPI Programming, (Recent Advances in PVM and MPI. Recent Advances in PVM and MPI, LNCS, vol. 4757 (2007), Springer), 356-364
[25] Manfredi, G., Long time behaviour of strong linear Landau damping, Phys. Rev. Lett., 79 (1997)
[26] Nakamura, T.; Yabe, T., Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space, Comput. Phys. Comm., 120, 122-154 (1999) · Zbl 1001.82003
[27] Shoucri, M.; Knorr, G., Numerical integration of the Vlasov equation, J. Comput. Phys., 14, 84-92 (1974) · Zbl 0275.65029
[28] Sonnendrücker, E.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Lund, S. M., Simulation of heavy ion beams with a semi-Lagrangian Vlasov solver, Nucl. Inst. Meth. Phys. Res., 464, 470-476 (2001)
[29] Sonnendrücker, E.; Filbet, F.; Friedman, A.; Oudet, E.; Vay, J. L., Vlasov simulation of beams on a moving phase space grid, Comput. Phys. Comm., 164, 390-395 (2004)
[30] Sonnendrücker, E.; Roche, J.; Bertrand, P.; Ghizzo, A., The semi-Lagrangian method for the numerical resolution of the Vlasov equations, J. Comput. Phys., 149, 201-220 (1999) · Zbl 0934.76073
[31] Staniforth, A.; Coté, J., Semi-Lagrangian integration schemes for atmospheric models – a review, Mon. Weather Rev., 119, 2206-2223 (1991)
[32] Zaki, S. I.; Gardner, L. R.; Boyd, T. J.M., A finite element code for the simulation of one-dimensional Vlasov plasmas I. Theory, J. Comput. Phys., 79, 184-199 (1988) · Zbl 0658.76111
[33] Zaki, S. I.; Gardner, L. R.; Boyd, T. J.M., A finite element code for the simulation of one-dimensional Vlasov plasmas II. Applications, J. Comput. Phys., 79, 200-208 (1988) · Zbl 0658.76112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.