×

Radiative cooling in numerical astrophysics: the need for adaptive mesh refinement. (English) Zbl 1271.76202

Summary: Energy loss through optically thin radiative cooling plays an important part in the evolution of astrophysical gas dynamics and should therefore be considered a necessary element in any numerical simulation. Although the addition of this physical process to the equations of hydrodynamics is straightforward, it does create numerical challenges that have to be overcome in order to ensure the physical correctness of the simulation. First, the cooling has to be treated (semi-)implicitly, owing to the discrepancies between the cooling timescale and the typical timesteps of the simulation. Secondly, because of its dependence on a tabulated cooling curve, the introduction of radiative cooling creates the necessity for an interpolation scheme. In particular, we will argue that the addition of radiative cooling to a numerical simulation creates the need for extremely high resolution, which can only be fully met through the use of adaptive mesh refinement.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
85-08 Computational methods for problems pertaining to astronomy and astrophysics
85A25 Radiative transfer in astronomy and astrophysics
PDFBibTeX XMLCite
Full Text: DOI arXiv Link Link

References:

[1] Beck R. In: Strassmeier KG, Kosovichev AG, Beckman JE, editors. Proc IAU symp 259, cosmic magnetic fields: from planets, to stars and galaxies. Cambridge: Cambridge Univ. Press; 2009. p. 3.; Beck R. In: Strassmeier KG, Kosovichev AG, Beckman JE, editors. Proc IAU symp 259, cosmic magnetic fields: from planets, to stars and galaxies. Cambridge: Cambridge Univ. Press; 2009. p. 3.
[2] Berger, M. J.M.; Colella, P., J Comput Phys, 82, 64 (1989)
[3] Buelow, P. E.O.; Venkateswaran, S.; Merkle, C. L., C&F, 30, 961 (2001)
[4] Castor, J. I., Radiation hydrodynamics (2004), Cambridge University Press: Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, United Kingdom · Zbl 1323.78006
[5] Castor, J.; McCray, R. A.; Weaver, ApJL, 200, 107 (1975)
[6] Chandrasekhar, S., Hydrodynamic and hydromagnetic stability (1981), Dover Publications, ISBN:978-0486640716
[7] Curran, R. L.; Chrysostomou, A., MNRAS, 382, 699 (2007)
[8] Dalgarno, A.; McCray, R. A., ARA&A, 10, 375 (1972)
[9] de Sterck, H.; Rostrup, S.; Feng, T., J Comput Appl Math, 223, 916 (2009)
[10] Field, F. H., JChPh, 19, 793 (1951)
[11] Fournier, E.; Gauthier, S.; Renaud, F., C&F, 31, 569 (2002)
[12] Freyer, T.; Hensler, G.; Yorke, H. W., ApJ, 624, 853 (2003)
[13] Freyer, T.; Hensler, G.; Yorke, H. W., ApJ, 638, 262 (2006)
[14] Fryxell, B., ApJS, 131, 273 (2000)
[15] García-Segura, G.; Mac Low, M. M.; Langer, N., A&A, 305, 229 (1996)
[16] García-Segura, G.; Langer, N.; Mac Low, M. M., A&A, 316, 133 (1996)
[17] García-Segura, G.; Langer, N.; Różyczka, M.; Franco, J., ApJ, 517, 767 (1999)
[18] Goedbloed, J. P.; Keppens, R.; Poedts, S., Advanced magnetohydrodynamics (2010), Cambridge University Press: Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, United Kingdom
[19] Jaffe, T. R.; Leahy, J. P.; Banday, A. J.; Lowe, S. R.; Wilkinson, A., MNRAS, 401, 1013 (2010)
[20] Keppens, R.; Nool, M.; Tóth, G.; Goedbloed, J. P., CoPhC, 153, 317 (2003)
[21] Laney, C. B., Computational gasdynamics (1998), Cambridge University Press: Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, United Kingdom · Zbl 0947.76001
[22] Langer, N.; Hamann, W.-R.; Lennon, M.; Najarro, F.; Pauldrach, A. W.A.; Puls, J., A&A, 290, 819L (1994)
[23] Löhner, R., Comput Methods Appl Mech Eng, 61, 323 (1987)
[24] MacDonald, J.; Bailey, M. E., MNRAS, 197, 995 (1981)
[25] Mellema, G.; Arthur, S. J.; Henney, W. J.; Iliev, I. T.; Shapiro, P. R., ApJ, 647, 397 (2006)
[26] Mellema, G.; Lundqvist, P., A&A, 394, 901 (2002)
[27] Mignone, A.; Plewa, T.; Bodo, G., ApJS, 160, 199 (2005)
[28] Miller, G. H.; Colella, P., J Comput Phys, 183, 26 (2002)
[29] Ostriker, J. P.; McKee, C. F., RvMP, 60, 10 (1988)
[30] Parker, E. N., ApJ, 117, 431 (1953)
[31] Schure, K. M.; Kosenko, D.; Kaastra, J. S.; Keppens, R.; Vink, J., A&A, 508, 751 (2009)
[32] Tóth, G.; Odstrčil, D., J Comput Phys, 128, 82 (1996)
[33] Townsend, R. H.D., ApJS, 181, 391 (2009)
[34] ud-Doula, A.; Owocki, S. P.; Townsend, R. H.D., MNRAS, 385, 97 (2008)
[35] ud-Doula, A.; Owocki, S. P.; Townsend, R. H.D., MNRAS, 392, 1022 (2009)
[36] van Dam, A.; Zegeling, P., Commun Comput Phys, 7, 138 (2010)
[37] van der Holst, B.; Keppens, R., J Comput Phys, 226, 925 (2007)
[38] van Leer, B., J Comput Phys, 14, 361 (1974)
[39] van Marle, A. J.; Langer, N.; García-Segura, G., A&A, 444, 837 (2005)
[40] van Marle, A. J.; Langer, N.; García-Segura, G., A&A, 469, 941 (2007)
[41] Vishniac, E. T., ApJ, 274, 152 (1983)
[42] Weaver, R.; McCray, R.; Castor, J.; Shapiro, P.; Moore, R., ApJ, 218, 377 (1977)
[43] Yee HC. NASA, TM-101088, 1989.; Yee HC. NASA, TM-101088, 1989.
[44] Young, Y.-N.; Tufo, H.; Dubey, A.; Rosner, R., J Fluid Mech, 447, 377 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.