×

Entropy analysis of integer and fractional dynamical systems. (English) Zbl 1211.37057

Several entropy definitions and types of particle dynamics are studied, to distinguish among integer and fractional behaviour.

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets

Software:

CRONE
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974) · Zbl 0292.26011
[2] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, New York (1993) · Zbl 0818.26003
[3] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[4] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1998) · Zbl 0922.45001
[5] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[6] Oustaloup, A.: La Commande CRONE: Commande Robuste D’ordre non Entier. Hermes, Oslo (1991) · Zbl 0864.93003
[7] Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69–79 (1994) · doi:10.1007/BF00206239
[8] Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996) · Zbl 1080.26505 · doi:10.1016/0960-0779(95)00125-5
[9] Machado, J.T.: Analysis and design of fractional-order digital control systems. J. Syst. Anal., Model. Simul. 27, 107–122 (1997) · Zbl 0875.93154
[10] Nigmatullin, R.: The statistics of the fractional moments: Is there any chance to ”read quantitatively” any randomness? Signal Process. 86(10), 2529–2547 (2006) · Zbl 1172.62303 · doi:10.1016/j.sigpro.2006.02.003
[11] Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885–898 (2006) · Zbl 1106.35103 · doi:10.1016/j.cnsns.2006.03.005
[12] Baleanu, D.: About fractional quantization and fractional variational principles. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2520–2523 (2009) · doi:10.1016/j.cnsns.2008.10.002
[13] Podlubny, I.: Fractional-order systems and PI {\(\lambda\)} D {\(\mu\)} -controllers. IEEE Trans. Autom. Control 44(1), 208–213 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[14] Tenreiro Machado, J.: Discrete-time fractional-order controllers. J. Fract. Calc. Appl. Anal. 4, 47–66 (2001) · Zbl 1111.93307
[15] Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(3), 363–367 (2002) · Zbl 1368.65035 · doi:10.1109/81.989172
[16] Tseng, C.C.: Design of fractional order digital fir differentiators. IEEE Signal Process. Lett. 8(3), 77–79 (2001) · doi:10.1109/97.905945
[17] Vinagre, B.M., Chen, Y.Q., Petras, I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349–362 (2003) · Zbl 1051.93031 · doi:10.1016/j.jfranklin.2003.08.001
[18] Tenreiro Machado, J., Galhano, A.M.S.: Statistical fractional dynamics. ASME J. Comput. Nonlinear Dyn. 3(2), 021201 (2008) · Zbl 1204.93060
[19] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948) · Zbl 1154.94303
[20] Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948) · Zbl 1154.94303
[21] Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957) · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[22] Khinchin, A.I.: Mathematical Foundations of Information Theory. Dover, New York (1957) · Zbl 0088.10404
[23] Plastino, A., Plastino, A.R.: Tsallis entropy and Jaynes’ information theory formalism. Braz. J. Phys. 29(1), 50–60 (1999) · doi:10.1590/S0103-97331999000100005
[24] Li, X., Essex, C., Davison, M., Hoffmann, K.H., Schulzky, C.: Fractional diffusion, irreversibility and entropy. J. Non-Equilib. Thermodyn. 28(3), 279–291 (2003) · doi:10.1515/JNETDY.2003.017
[25] Haubold, H.J., Mathai, A.M., Saxena, R.K.: Boltzmann–Gibbs entropy versus Tsallis entropy: recent contributions to resolving the argument of Einstein concerning ”Neither Herr Boltzmann nor Herr Planck has given a definition of W”? Astrophys. Space Sci. 290(3–4), 241–245 (2004) · Zbl 1115.82300 · doi:10.1023/B:ASTR.0000032616.18776.4b
[26] Mathai, A.M., Haubold, H.J.: Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy. Phys. A, Stat. Mech. Appl. 375(1), 110–122 (2007) · doi:10.1016/j.physa.2006.09.002
[27] Carter, T.: An introduction to information theory and entropy. Complex Systems Summer School, Santa Fe (June 2007)
[28] Rathie, P., Da Silva, S.: Shannon, Levy, and Tsallis: a note. Appl. Math. Sci. 2(28), 1359–1363 (2008)
[29] Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50(4), 495–510 (2009) · doi:10.1080/00107510902823517
[30] Gray, R.M.: Entropy and Information Theory. Springer, Berlin (2009)
[31] Al-Alaoui, M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993) · doi:10.1049/el:19930253
[32] Ubriaco, M.R.: Entropies based on fractional calculus. Phys. Lett. A 373(30), 2516–2519 (2009) · Zbl 1231.82024 · doi:10.1016/j.physleta.2009.05.026
[33] Tenreiro Machado, J., Galhano, A.M.: Statistical fractional dynamics. ASME J. Comput. Nonlinear Dyn. 3(2), 021201 (2008) · Zbl 1204.93060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.