zbMATH — the first resource for mathematics

Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. (English) Zbl 1068.35189
The author defines a notion of quasi-static evolution for the elliptic approximation of the Mumford-Shah functional proposed by L. Ambrosio and V. M. Tortorelli [Commun. Pure Appl. Math. 43, No. 8, 999–1036 (1990; Zbl 0722.49020), Boll. Unione Mat. Ital., VII. Ser., B 6, No. 1, 105–123 (1992; Zbl 0776.49029)]. The quasi-static evolution for the Ambrosio-Tortorelli functional is obtained through a discretization in time procedure: each step is performed using a variational argument which gives the minimal properties. The author proves that this regular evolution converges to a quasi-static growth of brittle fractures in linearly elastic bodies in the sense of Francfort-Larsen.

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35R35 Free boundary problems for PDEs
74R10 Brittle fracture
49J45 Methods involving semicontinuity and convergence; relaxation
74G65 Energy minimization in equilibrium problems in solid mechanics
Full Text: DOI arXiv
[1] Ambrosio, L.: A compactness theorem for a new class of functions of bounded variations. Boll. Un. Mat. Ital. 3-B, 857-881 (1989) · Zbl 0767.49001
[2] Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111, 291-322 (1990) · Zbl 0711.49064
[3] Ambrosio, L.: A new proof of the SBV compactness theorem. Calc. Var. Partial Differential Equations 3, 127-137 (1995) · Zbl 0837.49011
[4] Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variations and Free Discontinuity Problems. Clarendon Press, Oxford 2000 · Zbl 0957.49001
[5] Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma\) -convergence. Comm. Pure Appl. Math. 43, 999-1036 (1990) · Zbl 0722.49020
[6] Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. 6-B, 105-123 (1992) · Zbl 0776.49029
[7] Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48-4, 797-826 (2000) · Zbl 0995.74057
[8] Brezis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam 1973
[9] Cortesani, G.: Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara - Sez VII - Sc. Mat. 43 27-49 (1997) · Zbl 0916.49002
[10] Cortesani, G., Toader, R.: A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38, 585-604 (1999) · Zbl 0939.49024
[11] Dal Maso, G.: An introduction to \(\Gamma\) -convergence. Birkhäuser, 1993 · Zbl 0816.49001
[12] Dal Maso, G., Toader, R.: A model for the quasistatic growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101-135 (2002) · Zbl 1042.74002
[13] Focardi, M.: On the variational approximation of free discontinuity problems in the vectorial case. Math. Models Methods Appl. Sci. 11, 663-684 (2001) · Zbl 1010.49010
[14] Francfort, G.A., Larsen, C.J.: Existence and convergence for quasistatic evolution in brittle fracture. Comm. Pure Appl. Math. 56, 1465-1500 (2003) · Zbl 1068.74056
[15] Francfort, G.A., Marigo, J.-J.: Revisiting brittle fractures as an energy minimization problem. J. Mech. Phys. Solids 46, 1319-1342 (1998) · Zbl 0966.74060
[16] Giacomini, A.: A generalization of G o?ab theorem and applications to fracture mechanics. Math. Models Methods Appl. Sci. 12, 1245-1267 (2002) · Zbl 1092.74041
[17] Modica, L., Mortola, S.: Un esempio di \(\Gamma\) -convergenza. Boll. Un. Mat. Ital. 14-B, 285-299 (1977) · Zbl 0356.49008
[18] Yosida, K.: Functional Analysis. Springer, Berlin Heidelberg New York 1965 · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.