Chen, Xin; Zhang, Yuhan; Zhou, Sean X. Preservation of quasi-\(K\)-concavity and its applications. (English) Zbl 1231.90020 Oper. Res. 58, No. 4, Part 1, 1012-1016 (2010). Summary: We establish a new preservation property of quasi-\(K\)-concavity under certain optimization operations. One important application of the result is to analyze joint inventory-pricing models for single-product periodic-review inventory systems with concave ordering costs. At each period, an ordering quantity and a selling price of the product are determined simultaneously. Demand is random but sensitive to the price. The objective is to maximize the total expected discounted profit over a finite planning horizon. Assuming that demand is a deterministic function of the selling price plus a random perturbation with a positive Pólya or uniform distribution, we show that a generalized \((s, S, p)\) policy is optimal. Cited in 3 Documents MSC: 90B05 Inventory, storage, reservoirs 90C26 Nonconvex programming, global optimization Keywords:inventory control; pricing; concave ordering cost; quasi-\(K\)-concavity; optimal policy PDF BibTeX XML Cite \textit{X. Chen} et al., Oper. Res. 58, No. 4, Part 1, 1012--1016 (2010; Zbl 1231.90020) Full Text: DOI