Mohan, Manil T. Pontryagin’s maximum principle for distributed optimal control of two dimensional tidal dynamics system with state constraints of integral type. (English) Zbl 07544249 Acta Appl. Math. 179, Paper No. 12, 35 p. (2022). MSC: 49J20 49K15 35Q35 35B50 PDF BibTeX XML Cite \textit{M. T. Mohan}, Acta Appl. Math. 179, Paper No. 12, 35 p. (2022; Zbl 07544249) Full Text: DOI OpenURL
He, Yiran; Xu, Wending An improved stability result on the metric regularity under Lipschitz set-valued perturbations. (English) Zbl 07540671 J. Math. Anal. Appl. 514, No. 1, Article ID 126253, 8 p. (2022). MSC: 49Jxx 90Cxx 49Kxx 58E30 PDF BibTeX XML Cite \textit{Y. He} and \textit{W. Xu}, J. Math. Anal. Appl. 514, No. 1, Article ID 126253, 8 p. (2022; Zbl 07540671) Full Text: DOI OpenURL
Arutyunov, A. V.; Zhukovskiy, S. E. Variational principles and mean value estimates. (English) Zbl 07528339 J. Optim. Theory Appl. 193, No. 1-3, 21-41 (2022). MSC: 90Cxx 49-XX PDF BibTeX XML Cite \textit{A. V. Arutyunov} and \textit{S. E. Zhukovskiy}, J. Optim. Theory Appl. 193, No. 1--3, 21--41 (2022; Zbl 07528339) Full Text: DOI OpenURL
Frankowska, Hélène; Sagara, Nobusumi Value functions and optimality conditions for nonconvex variational problems with an infinite horizon in Banach spaces. (English) Zbl 07527991 Math. Oper. Res. 47, No. 1, 320-340 (2022). MSC: 49J27 34A60 49J50 49J52 49J53 49K15 90C39 PDF BibTeX XML Cite \textit{H. Frankowska} and \textit{N. Sagara}, Math. Oper. Res. 47, No. 1, 320--340 (2022; Zbl 07527991) Full Text: DOI OpenURL
Rodrigues, Hugo Murilo; Fukuoka, Ryuichi Geodesic fields for Pontryagin type \(C^0\)-Finsler manifolds. (English) Zbl 1485.49027 ESAIM, Control Optim. Calc. Var. 28, Paper No. 19, 41 p. (2022). MSC: 49K15 53B40 53C22 49K27 58A05 PDF BibTeX XML Cite \textit{H. M. Rodrigues} and \textit{R. Fukuoka}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 19, 41 p. (2022; Zbl 1485.49027) Full Text: DOI OpenURL
Sumin, V. I.; Sumin, M. I. Regularization of the classical optimality conditions in optimal control problems for linear distributed systems of Volterra type. (English. Russian original) Zbl 1484.49008 Comput. Math. Math. Phys. 62, No. 1, 42-65 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 45-70 (2022). MSC: 49J21 49K21 39B05 39B42 PDF BibTeX XML Cite \textit{V. I. Sumin} and \textit{M. I. Sumin}, Comput. Math. Math. Phys. 62, No. 1, 42--65 (2022; Zbl 1484.49008); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 45--70 (2022) Full Text: DOI OpenURL
Nath, Bhagya Jyoti; Sarmah, Hemanta Kumar; Maurer, Helmut An optimal control strategy for antiretroviral treatment of HIV infection in presence of immunotherapy. (English) Zbl 07489695 Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 30, 26 p. (2022). MSC: 37M05 34D23 37N25 92B05 49K15 PDF BibTeX XML Cite \textit{B. J. Nath} et al., Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 30, 26 p. (2022; Zbl 07489695) Full Text: DOI OpenURL
Nour, Chadi; Zeidan, Vera Optimal control of nonconvex sweeping processes with separable endpoints: nonsmooth maximum principle for local minimizers. (English) Zbl 07487005 J. Differ. Equations 318, 113-168 (2022). MSC: 49J52 49J35 49K15 90Cxx PDF BibTeX XML Cite \textit{C. Nour} and \textit{V. Zeidan}, J. Differ. Equations 318, 113--168 (2022; Zbl 07487005) Full Text: DOI OpenURL
Zhang, Yi Nonshifted dynamics of constrained systems on time scales under Lagrange framework and its Noether’s theorem. (English) Zbl 07474625 Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106214, 10 p. (2022). MSC: 70Hxx 49Kxx 70Gxx PDF BibTeX XML Cite \textit{Y. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 108, Article ID 106214, 10 p. (2022; Zbl 07474625) Full Text: DOI OpenURL
Hofmann, S.; Borzì, A. A sequential quadratic Hamiltonian algorithm for training explicit RK neural networks. (English) Zbl 1480.49004 J. Comput. Appl. Math. 405, Article ID 113943, 17 p. (2022). MSC: 49J15 49K15 49M05 65K10 92B20 68T05 PDF BibTeX XML Cite \textit{S. Hofmann} and \textit{A. Borzì}, J. Comput. Appl. Math. 405, Article ID 113943, 17 p. (2022; Zbl 1480.49004) Full Text: DOI OpenURL
Bonnet, Benoît; Frankowska, Hélène Semiconcavity and sensitivity analysis in mean-field optimal control and applications. (English. French summary) Zbl 1483.30106 J. Math. Pures Appl. (9) 157, 282-345 (2022). MSC: 30L99 49K27 49K40 49Q12 49Q22 58E25 PDF BibTeX XML Cite \textit{B. Bonnet} and \textit{H. Frankowska}, J. Math. Pures Appl. (9) 157, 282--345 (2022; Zbl 1483.30106) Full Text: DOI arXiv OpenURL
Bayen, Térence; Boumaza, Kenza; Rapaport, Alain Necessary optimality condition for the minimal time crisis relaxing transverse condition via regularization. (English) Zbl 07549315 ESAIM, Control Optim. Calc. Var. 27, Paper No. 105, 30 p. (2021). MSC: 34H05 49K15 49J45 34A38 PDF BibTeX XML Cite \textit{T. Bayen} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 105, 30 p. (2021; Zbl 07549315) Full Text: DOI OpenURL
Ronzhina, Mariya I.; Manita, Larisa A.; Lokutsievskiy, Lev V. Solutions of a Hamiltonian system with two-dimensional control in a neighbourhood of a singular second-order extremal. (English. Russian original) Zbl 07505224 Russ. Math. Surv. 76, No. 5, 936-938 (2021); translation from Usp. Mat. Nauk 76, No. 5, 201-202 (2021). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49J15 49J10 49K15 49N60 34H05 PDF BibTeX XML Cite \textit{M. I. Ronzhina} et al., Russ. Math. Surv. 76, No. 5, 936--938 (2021; Zbl 07505224); translation from Usp. Mat. Nauk 76, No. 5, 201--202 (2021) Full Text: DOI OpenURL
Bonnet, Benoît; Frankowska, Hélène Necessary optimality conditions for optimal control problems in Wasserstein spaces. (English) Zbl 07498406 Appl. Math. Optim. 84, Suppl. 2, 1281-1330 (2021); correction ibid. 84, Suppl. 2, 1819 (2021). MSC: 30L99 34K09 49J53 49K21 49Q22 58E25 PDF BibTeX XML Cite \textit{B. Bonnet} and \textit{H. Frankowska}, Appl. Math. Optim. 84, 1281--1330 (2021; Zbl 07498406) Full Text: DOI OpenURL
Pikina, G. A.; Pashchenko, F. F. Synthesis of third-order time-optimal control system for plants with extremum time response. (English. Russian original) Zbl 1484.49045 Autom. Remote Control 82, No. 12, 2183-2191 (2021); translation from Datchiki Sist. 2020, No. 1, 3-8 (2020). MSC: 49K15 37N25 PDF BibTeX XML Cite \textit{G. A. Pikina} and \textit{F. F. Pashchenko}, Autom. Remote Control 82, No. 12, 2183--2191 (2021; Zbl 1484.49045); translation from Datchiki Sist. 2020, No. 1, 3--8 (2020) Full Text: DOI OpenURL
Sumin, Vladimir Iosifovich; Sumin, Mikhail Iosifovich Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems. (Russian. English summary) Zbl 1483.49029 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 2, 265-284 (2021). MSC: 49K20 39B22 49N15 47A52 PDF BibTeX XML Cite \textit{V. I. Sumin} and \textit{M. I. Sumin}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 2, 265--284 (2021; Zbl 1483.49029) Full Text: DOI MNR OpenURL
Aliane, Mohamed; Moussouni, Nacima; Bentobache, Mohand Numerical methods for the optimal control of the heel angle of a rocket. (English) Zbl 07468414 Int. J. Math. Oper. Res. 20, No. 3, 418-431 (2021). MSC: 49M99 49K15 90C30 PDF BibTeX XML Cite \textit{M. Aliane} et al., Int. J. Math. Oper. Res. 20, No. 3, 418--431 (2021; Zbl 07468414) Full Text: DOI OpenURL
Mohan, Manil T. First order necessary conditions of optimality for the two dimensional tidal dynamics system. (English) Zbl 1481.49007 Math. Control Relat. Fields 11, No. 4, 739-769 (2021). MSC: 49J20 35Q35 49K20 PDF BibTeX XML Cite \textit{M. T. Mohan}, Math. Control Relat. Fields 11, No. 4, 739--769 (2021; Zbl 1481.49007) Full Text: DOI arXiv OpenURL
Dolbeault, Jean Functional inequalities: nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results. (English) Zbl 1481.35006 Milan J. Math. 89, No. 2, 355-386 (2021). MSC: 35-02 35A23 26D10 35B06 35J60 35K55 46B70 46E35 49J40 49K20 49K30 53C21 PDF BibTeX XML Cite \textit{J. Dolbeault}, Milan J. Math. 89, No. 2, 355--386 (2021; Zbl 1481.35006) Full Text: DOI arXiv OpenURL
Sethi, Suresh P. Optimal control theory. Applications to management science and economics. 4th edition. (English) Zbl 07451851 Springer Texts in Business and Economics. Cham: Springer (ISBN 978-3-030-91744-9/hbk; 978-3-030-91745-6/ebook). xxvii, 506 p. (2021). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 49-01 91-01 49K15 49N10 49S05 49J15 49J55 49N35 91B76 91B62 90C30 91A10 90B30 90B60 91A23 60J60 PDF BibTeX XML Cite \textit{S. P. Sethi}, Optimal control theory. Applications to management science and economics. 4th edition. Cham: Springer (2021; Zbl 07451851) Full Text: DOI OpenURL
Smirnova, Nina; Cherkasov, Oleg Range maximization problem with a penalty on fuel consumption in the modified brachistochrone problem. (English) Zbl 1481.49040 Appl. Math. Modelling 91, 581-589 (2021). MSC: 49N90 49K15 PDF BibTeX XML Cite \textit{N. Smirnova} and \textit{O. Cherkasov}, Appl. Math. Modelling 91, 581--589 (2021; Zbl 1481.49040) Full Text: DOI OpenURL
Ashchepkov, Leonid T.; Dolgy, Dmitriy V.; Kim, Taekyun; Agarwal, Ravi P. Optimal control. 2nd edition. (English) Zbl 1481.49001 Cham: Springer (ISBN 978-3-030-91028-0/hbk; 978-3-030-91029-7/ebook). xvii, 251 p. (2021). MSC: 49-01 49J15 49K15 49J21 93-01 93B05 93C05 93C10 93C95 PDF BibTeX XML Cite \textit{L. T. Ashchepkov} et al., Optimal control. 2nd edition. Cham: Springer (2021; Zbl 1481.49001) Full Text: DOI OpenURL
Sumin, Mikhail Iosifovich Lagrange principle and its regularization as a theoretical basis of stable solving optimal control and inverse problems. (Russian. English summary) Zbl 07432732 Vestn. Ross. Univ., Mat. 26, No. 134, 151-171 (2021). MSC: 49K20 49N60 49N15 47A52 PDF BibTeX XML Cite \textit{M. I. Sumin}, Vestn. Ross. Univ., Mat. 26, No. 134, 151--171 (2021; Zbl 07432732) Full Text: DOI MNR OpenURL
Huong, Vu Thi; Yao, Jen-Chih; Yen, Nguyen Dong Analyzing a maximum principle for finite horizon state constrained problems via parametric examples. II: Problems with bilateral state constraints. (English) Zbl 1477.49030 Numer. Funct. Anal. Optim. 42, No. 11, 1334-1366 (2021). MSC: 49K15 49J15 PDF BibTeX XML Cite \textit{V. T. Huong} et al., Numer. Funct. Anal. Optim. 42, No. 11, 1334--1366 (2021; Zbl 1477.49030) Full Text: DOI arXiv OpenURL
Yegorov, Ivan; Dower, Peter M.; Grüne, Lars Synthesis of control Lyapunov functions and stabilizing feedback strategies using exit-time optimal control. I: Theory. (English) Zbl 1472.93075 Optim. Control Appl. Methods 42, No. 5, 1385-1409 (2021). MSC: 93C15 49K15 49L12 93D15 93D30 PDF BibTeX XML Cite \textit{I. Yegorov} et al., Optim. Control Appl. Methods 42, No. 5, 1385--1409 (2021; Zbl 1472.93075) Full Text: DOI arXiv OpenURL
Mohan, Manil T. The time optimal control of two dimensional convective Brinkman-Forchheimer equations. (English) Zbl 1480.49007 Appl. Math. Optim. 84, No. 3, 3295-3338 (2021). Reviewer: Wei Gong (Beijing) MSC: 49J20 49K15 49S05 35Q35 76D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, Appl. Math. Optim. 84, No. 3, 3295--3338 (2021; Zbl 1480.49007) Full Text: DOI OpenURL
Zhu, Minyi; Gong, Guobin; Xia, Jun Curve optimization of tapered cantilever beams under tip loads. (English) Zbl 07409165 Adv. Appl. Math. Mech. 13, No. 6, 1485-1500 (2021). MSC: 49K35 49S05 74P05 49Q10 PDF BibTeX XML Cite \textit{M. Zhu} et al., Adv. Appl. Math. Mech. 13, No. 6, 1485--1500 (2021; Zbl 07409165) Full Text: DOI OpenURL
Mei, Hongwei Time-inconsistent risk-sensitive equilibrium for countable-stated Markov decision processes. (English) Zbl 1478.49023 Appl. Math. Optim. 84, No. 2, 1641-1666 (2021). Reviewer: Alex V. Kolnogorov (Novgorod) MSC: 49L20 60J10 PDF BibTeX XML Cite \textit{H. Mei}, Appl. Math. Optim. 84, No. 2, 1641--1666 (2021; Zbl 1478.49023) Full Text: DOI arXiv OpenURL
Gajardo, Pedro; Riquelme, Victor; Vicencio, Diego Optimal control of diseases in prison populations through screening policies of new inmates. (English) Zbl 1471.49036 SIAM J. Control Optim. 59, No. 4, S1-S26 (2021). MSC: 49S05 34H05 49K15 49N35 92D30 92D25 35F21 PDF BibTeX XML Cite \textit{P. Gajardo} et al., SIAM J. Control Optim. 59, No. 4, S1--S26 (2021; Zbl 1471.49036) Full Text: DOI arXiv OpenURL
Dai, Haoran; Zhou, Jianjun; Li, Han Infinite horizon stochastic maximum principle for stochastic delay evolution equations in Hilbert spaces. (English) Zbl 1470.93163 Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3229-3258 (2021). MSC: 93E20 93C25 60H30 49K27 49N10 PDF BibTeX XML Cite \textit{H. Dai} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 5, 3229--3258 (2021; Zbl 1470.93163) Full Text: DOI OpenURL
Bourdin, Loïc; Ferreira, Rui A. C. Legendre’s necessary condition for fractional Bolza functionals with mixed initial/final constraints. (English) Zbl 1471.49017 J. Optim. Theory Appl. 190, No. 2, 672-708 (2021). MSC: 49K05 26A33 34A08 PDF BibTeX XML Cite \textit{L. Bourdin} and \textit{R. A. C. Ferreira}, J. Optim. Theory Appl. 190, No. 2, 672--708 (2021; Zbl 1471.49017) Full Text: DOI arXiv OpenURL
Jahn, Tim A modified discrepancy principle to attain optimal convergence rates under unknown noise. (English) Zbl 1472.62066 Inverse Probl. 37, No. 9, Article ID 095008, 23 p. (2021). MSC: 62G20 65J22 PDF BibTeX XML Cite \textit{T. Jahn}, Inverse Probl. 37, No. 9, Article ID 095008, 23 p. (2021; Zbl 1472.62066) Full Text: DOI arXiv OpenURL
Bettiol, Piernicola; Mariconda, Carlo A Du Bois-Reymond convex inclusion for nonautonomous problems of the calculus of variations and regularity of minimizers. (English) Zbl 1468.49040 Appl. Math. Optim. 83, No. 3, 2083-2107 (2021). MSC: 49N60 49K05 90C25 PDF BibTeX XML Cite \textit{P. Bettiol} and \textit{C. Mariconda}, Appl. Math. Optim. 83, No. 3, 2083--2107 (2021; Zbl 1468.49040) Full Text: DOI OpenURL
Kalpakides, Vassilios K.; Charalambopoulos, Antonios On Hamilton’s principle for discrete and continuous systems: a convolved action principle. (English) Zbl 07371591 Rep. Math. Phys. 87, No. 2, 225-248 (2021). MSC: 70H25 49K05 49K21 49S05 26A33 35A15 PDF BibTeX XML Cite \textit{V. K. Kalpakides} and \textit{A. Charalambopoulos}, Rep. Math. Phys. 87, No. 2, 225--248 (2021; Zbl 07371591) Full Text: DOI arXiv OpenURL
Bettiol, Piernicola; Bourdin, Loïc Pontryagin maximum principle for state constrained optimal sampled-data control problems on time scales. (English) Zbl 1470.49045 ESAIM, Control Optim. Calc. Var. 27, Paper No. 51, 36 p. (2021). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 49J35 26E70 34H05 34K35 34N05 39A12 PDF BibTeX XML Cite \textit{P. Bettiol} and \textit{L. Bourdin}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 51, 36 p. (2021; Zbl 1470.49045) Full Text: DOI OpenURL
Zhu, Linhe; Zhou, Mengtian; Liu, Ying; Zhang, Zhengdi Nonlinear dynamic analysis and optimum control of reaction-diffusion rumor propagation models in both homogeneous and heterogeneous networks. (English) Zbl 07358650 J. Math. Anal. Appl. 502, No. 2, Article ID 125260, 39 p. (2021). MSC: 35K51 35K57 49K20 49N90 91D30 92D30 PDF BibTeX XML Cite \textit{L. Zhu} et al., J. Math. Anal. Appl. 502, No. 2, Article ID 125260, 39 p. (2021; Zbl 07358650) Full Text: DOI OpenURL
Goverde, Rob M. P.; Scheepmaker, Gerben M.; Wang, Pengling Pseudospectral optimal train control. (English) Zbl 07356071 Eur. J. Oper. Res. 292, No. 1, 353-375 (2021). MSC: 49N90 49K15 49M37 PDF BibTeX XML Cite \textit{R. M. P. Goverde} et al., Eur. J. Oper. Res. 292, No. 1, 353--375 (2021; Zbl 07356071) Full Text: DOI OpenURL
Abdalla, Hassan Mohamed Abdelalim; Casagrande, Daniele An intrinsic material tailoring approach for functionally graded axisymmetric hollow bodies under plane elasticity. (English) Zbl 1465.49017 J. Elasticity 144, No. 1, 15-32 (2021). MSC: 49K15 49K30 49S05 74M25 74P10 PDF BibTeX XML Cite \textit{H. M. A. Abdalla} and \textit{D. Casagrande}, J. Elasticity 144, No. 1, 15--32 (2021; Zbl 1465.49017) Full Text: DOI OpenURL
Treanţă, Savin; Singh, Shipra Weak sharp solutions associated with a multidimensional variational-type inequality. (English) Zbl 1470.49027 Positivity 25, No. 2, 329-351 (2021). Reviewer: Zijia Peng (Nanning) MSC: 49J40 49J50 65K10 26B25 90C30 49K20 PDF BibTeX XML Cite \textit{S. Treanţă} and \textit{S. Singh}, Positivity 25, No. 2, 329--351 (2021; Zbl 1470.49027) Full Text: DOI OpenURL
Jiménez, Fernando; Ober-Blöbaum, Sina Fractional damping through restricted calculus of variations. (English) Zbl 1477.70031 J. Nonlinear Sci. 31, No. 2, Paper No. 46, 43 p. (2021). MSC: 70H30 70H25 26A33 37J46 49K21 49S05 65P10 PDF BibTeX XML Cite \textit{F. Jiménez} and \textit{S. Ober-Blöbaum}, J. Nonlinear Sci. 31, No. 2, Paper No. 46, 43 p. (2021; Zbl 1477.70031) Full Text: DOI arXiv OpenURL
Buckdahn, Rainer; Chen, Yajie; Li, Juan Partial derivative with respect to the measure and its application to general controlled mean-field systems. (English) Zbl 1471.93275 Stochastic Processes Appl. 134, 265-307 (2021). MSC: 93E20 60H10 49K45 PDF BibTeX XML Cite \textit{R. Buckdahn} et al., Stochastic Processes Appl. 134, 265--307 (2021; Zbl 1471.93275) Full Text: DOI OpenURL
Roubíček, Tomáš Fine metrizable convex relaxations of parabolic optimal control problems. (English) Zbl 1472.35415 SIAM J. Control Optim. 59, No. 2, 1293-1311 (2021). Reviewer: Antonio André Novotny (Petrópolis) MSC: 35Q93 46A55 49J20 49J45 49K20 54D35 35B45 35A01 PDF BibTeX XML Cite \textit{T. Roubíček}, SIAM J. Control Optim. 59, No. 2, 1293--1311 (2021; Zbl 1472.35415) Full Text: DOI arXiv OpenURL
Ma, Zhongjing; Zou, Suli Optimal control theory. The variational method. (English) Zbl 1469.49001 Singapore: Springer (ISBN 978-981-33-6291-8/hbk; 978-981-33-6294-9/pbk; 978-981-33-6292-5/ebook). xix, 344 p. (2021). Reviewer: Morteza Pakdaman (Mashhad) MSC: 49-02 49K15 49J40 49N10 49N70 91A23 49-01 49S05 49L20 91A10 91A05 PDF BibTeX XML Cite \textit{Z. Ma} and \textit{S. Zou}, Optimal control theory. The variational method. Singapore: Springer (2021; Zbl 1469.49001) Full Text: DOI OpenURL
Liu, Xin; Frank, Jason Symplectic Runge-Kutta discretization of a regularized forward-backward sweep iteration for optimal control problems. (English) Zbl 1447.49043 J. Comput. Appl. Math. 383, Article ID 113133, 16 p. (2021). MSC: 49M20 65L06 37M15 49K15 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Frank}, J. Comput. Appl. Math. 383, Article ID 113133, 16 p. (2021; Zbl 1447.49043) Full Text: DOI arXiv OpenURL
Cordoni, Francesco; Di Persio, Luca A maximum principle for a stochastic control problem with multiple random terminal times. (English) Zbl 07511713 Math. Eng. (Springfield) 2, No. 3, 557-583 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 49K45 60H10 93E20 49N10 PDF BibTeX XML Cite \textit{F. Cordoni} and \textit{L. Di Persio}, Math. Eng. (Springfield) 2, No. 3, 557--583 (2020; Zbl 07511713) Full Text: DOI OpenURL
Song, Teng; Liu, Bin A maximum principle for fully coupled controlled forward-backward stochastic difference systems of mean-field type. (English) Zbl 1482.60081 Adv. Difference Equ. 2020, Paper No. 188, 24 p. (2020). MSC: 60H10 93E20 49K45 49N10 60G42 91A16 PDF BibTeX XML Cite \textit{T. Song} and \textit{B. Liu}, Adv. Difference Equ. 2020, Paper No. 188, 24 p. (2020; Zbl 1482.60081) Full Text: DOI OpenURL
Shmatkov, A. M. Periodic solutions to the optimal control problem of rotation of a rigid body using internal mass. (English. Russian original) Zbl 1472.49049 Mosc. Univ. Mech. Bull. 75, No. 3, 75-79 (2020); translation from Vestn. Mosk. Univ., Ser. I 75, No. 3, 63-66 (2020). MSC: 49K21 70E15 35B10 PDF BibTeX XML Cite \textit{A. M. Shmatkov}, Mosc. Univ. Mech. Bull. 75, No. 3, 75--79 (2020; Zbl 1472.49049); translation from Vestn. Mosk. Univ., Ser. I 75, No. 3, 63--66 (2020) Full Text: DOI OpenURL
Huong, Vu Thi; Yao, Jen-Chih; Yen, Nguyen Dong Analyzing a maximum principle for finite horizon state constrained problems via parametric examples. I: Problems with unilateral state constraints. (English) Zbl 1462.49044 J. Nonlinear Convex Anal. 21, No. 1, 157-182 (2020). MSC: 49K15 49J15 91B62 PDF BibTeX XML Cite \textit{V. T. Huong} et al., J. Nonlinear Convex Anal. 21, No. 1, 157--182 (2020; Zbl 1462.49044) Full Text: arXiv Link OpenURL
Li, Min; Wu, Zhen Near-optimal control problems for forward-backward regime-switching systems. (English) Zbl 1460.93110 ESAIM, Control Optim. Calc. Var. 26, Paper No. 94, 26 p. (2020). MSC: 93E20 60H10 60J27 PDF BibTeX XML Cite \textit{M. Li} and \textit{Z. Wu}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 94, 26 p. (2020; Zbl 1460.93110) Full Text: DOI OpenURL
Shugailo, T. S. Motion control of a loaded gantry crane by prescribing its acceleration. (English. Russian original) Zbl 1457.49036 Vestn. St. Petersbg. Univ., Math. 53, No. 1, 100-107 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 1, 154-164 (2020). MSC: 49S05 70B15 49K15 70F25 70G75 PDF BibTeX XML Cite \textit{T. S. Shugailo}, Vestn. St. Petersbg. Univ., Math. 53, No. 1, 100--107 (2020; Zbl 1457.49036); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 1, 154--164 (2020) Full Text: DOI OpenURL
Bonnard, Bernard; Rouot, Jérémy Toward geometric time minimal control without Legendre condition and with multiple singular extremals for chemical networks. (English) Zbl 1457.92006 Kotas, Jakob (ed.), Advances in nonlinear biological systems: modeling and optimal control. Selected papers based on the presentations at the special session on mathematical methods and models in medicine at the American Mathematical Society (AMS)’s spring Central and Western joint sectional meeting, Honolulu, HI, USA, March 22–24, 2019. Springfield, MO: American Institute of Mathematical Sciences (AIMS). AIMS Ser. Appl. Math. 11, 1-34 (2020). MSC: 92B05 49K15 58K45 PDF BibTeX XML Cite \textit{B. Bonnard} and \textit{J. Rouot}, AIMS Ser. Appl. Math. 11, 1--34 (2020; Zbl 1457.92006) Full Text: arXiv OpenURL
Kiselev, Yu. N.; Orlov, M. V.; Orlov, S. M. Multidimensional economic-growth models with an integral utility function. (English. Russian original) Zbl 1455.49032 Mosc. Univ. Comput. Math. Cybern. 44, No. 2, 73-86 (2020); translation from Vestn. Mosk. Univ., Ser. XV 2020, No. 2, 50-56 (2020). MSC: 49S05 91B16 49K15 PDF BibTeX XML Cite \textit{Yu. N. Kiselev} et al., Mosc. Univ. Comput. Math. Cybern. 44, No. 2, 73--86 (2020; Zbl 1455.49032); translation from Vestn. Mosk. Univ., Ser. XV 2020, No. 2, 50--56 (2020) Full Text: DOI OpenURL
Fu, Yu; Zhao, Weidong; Zhou, Tao Highly accurate numerical schemes for stochastic optimal control via FBSDEs. (English) Zbl 1463.65005 Numer. Math., Theory Methods Appl. 13, No. 2, 296-319 (2020). MSC: 65C30 60H35 49K45 49M29 65K15 93E20 PDF BibTeX XML Cite \textit{Y. Fu} et al., Numer. Math., Theory Methods Appl. 13, No. 2, 296--319 (2020; Zbl 1463.65005) Full Text: DOI OpenURL
Bayen, Térence; Rapaport, Alain; Tani, Fatima-Zahra Optimal periodic control for scalar dynamics under integral constraint on the input. (English) Zbl 1455.49001 Math. Control Relat. Fields 10, No. 3, 547-571 (2020). MSC: 49J15 49K15 34C25 49N20 49J30 PDF BibTeX XML Cite \textit{T. Bayen} et al., Math. Control Relat. Fields 10, No. 3, 547--571 (2020; Zbl 1455.49001) Full Text: DOI OpenURL
Gün Polat, Gülden; Özer, Teoman On group analysis of optimal control problems in economic growth models. (English) Zbl 1477.49029 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2853-2876 (2020). MSC: 49K15 35A30 91B62 PDF BibTeX XML Cite \textit{G. Gün Polat} and \textit{T. Özer}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2853--2876 (2020; Zbl 1477.49029) Full Text: DOI OpenURL
Benner, Peter; Trautwein, Christoph Optimal control of the stochastic Navier-Stokes equations. (English) Zbl 1454.49031 Grecksch, Wilfried (ed.) et al., Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 161-211 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 49K45 35Q30 35R60 60H30 PDF BibTeX XML Cite \textit{P. Benner} and \textit{C. Trautwein}, in: Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 161--211 (2020; Zbl 1454.49031) Full Text: DOI OpenURL
Azimi, Mahdi; Grecksch, Wilfried Stochastic Itô-Volterra backward equations in Banach spaces. (English) Zbl 1454.60086 Grecksch, Wilfried (ed.) et al., Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 61-113 (2020). Reviewer: Yuliya S. Mishura (Kyïv) MSC: 60H15 35R60 60H30 49K45 PDF BibTeX XML Cite \textit{M. Azimi} and \textit{W. Grecksch}, in: Infinite dimensional and finite dimensional stochastic equations and applications in physics. Hackensack, NJ: World Scientific. 61--113 (2020; Zbl 1454.60086) Full Text: DOI OpenURL
Osmolovskii, N. P.; Veliov, V. M. Metric sub-regularity in optimal control of affine problems with free end state. (English) Zbl 1448.49033 ESAIM, Control Optim. Calc. Var. 26, Paper No. 47, 19 p. (2020). MSC: 49K40 49J53 49J30 49K15 47J30 PDF BibTeX XML Cite \textit{N. P. Osmolovskii} and \textit{V. M. Veliov}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 47, 19 p. (2020; Zbl 1448.49033) Full Text: DOI OpenURL
Kamocki, Rafał Necessary optimality conditions for Lagrange problems involving ordinary control systems described by fractional Laplace operators. (English) Zbl 1464.49013 Nonlinear Anal., Model. Control 25, No. 5, 884-901 (2020). Reviewer: Suvra Kanti Chakraborty (Kolkata) MSC: 49K10 35R11 35B65 35J60 90C22 PDF BibTeX XML Cite \textit{R. Kamocki}, Nonlinear Anal., Model. Control 25, No. 5, 884--901 (2020; Zbl 1464.49013) Full Text: DOI OpenURL
Liang, Hong; Zhou, Jianjun Infinite horizon optimal control problems of backward stochastic delay differential equations in Hilbert spaces. (English) Zbl 1448.93347 Bull. Korean Math. Soc. 57, No. 2, 311-330 (2020). MSC: 93E20 60H30 49K27 49N10 PDF BibTeX XML Cite \textit{H. Liang} and \textit{J. Zhou}, Bull. Korean Math. Soc. 57, No. 2, 311--330 (2020; Zbl 1448.93347) Full Text: DOI OpenURL
Bouafia, Dahmane; Moussaoui, Toufik; O’Regan, Donal Multiplicity of positive solutions for second order quasilinear equations. (English) Zbl 1474.35019 Math. Bohem. 145, No. 1, 93-112 (2020). MSC: 35A15 35B38 30E25 58E30 49K35 PDF BibTeX XML Cite \textit{D. Bouafia} et al., Math. Bohem. 145, No. 1, 93--112 (2020; Zbl 1474.35019) Full Text: DOI OpenURL
Aïd, René; Callegaro, Giorgia; Campi, Luciano No-arbitrage commodity option pricing with market manipulation. (English) Zbl 1443.91281 Math. Financ. Econ. 14, No. 3, 577-603 (2020); correction ibid. 15, No. 2, 473-475 (2021). MSC: 91G20 60G44 91A15 91A80 PDF BibTeX XML Cite \textit{R. Aïd} et al., Math. Financ. Econ. 14, No. 3, 577--603 (2020; Zbl 1443.91281) Full Text: DOI arXiv OpenURL
Biswas, Tania; Dharmatti, Sheetal; Mohan, Manil T. Maximum principle for some optimal control problems governed by 2D nonlocal Cahn-Hillard-Navier-Stokes equations. (English) Zbl 1440.49003 J. Math. Fluid Mech. 22, No. 3, Paper No. 34, 42 p. (2020). MSC: 49J20 35Q35 76D03 49K15 49S05 58E30 PDF BibTeX XML Cite \textit{T. Biswas} et al., J. Math. Fluid Mech. 22, No. 3, Paper No. 34, 42 p. (2020; Zbl 1440.49003) Full Text: DOI arXiv OpenURL
Arutyunov, A. V.; Zhukovskiy, S. E. Necessary optimality conditions for optimal control problems in the presence of degeneration. (English. Russian original) Zbl 1445.49016 Differ. Equ. 56, No. 2, 238-250 (2020); translation from Differ. Uravn. 56, No. 2, 243-255 (2020). Reviewer: Mihail Voicu (Iaşi) MSC: 49L99 49K15 PDF BibTeX XML Cite \textit{A. V. Arutyunov} and \textit{S. E. Zhukovskiy}, Differ. Equ. 56, No. 2, 238--250 (2020; Zbl 1445.49016); translation from Differ. Uravn. 56, No. 2, 243--255 (2020) Full Text: DOI OpenURL
Arguillère, Sylvain Sub-Riemannian geometry and geodesics in Banach manifolds. (English) Zbl 1446.49021 J. Geom. Anal. 30, No. 3, 2897-2938 (2020). Reviewer: A. Omrane (Cayenne) MSC: 49K27 49K15 53C17 53C22 53D25 37K06 PDF BibTeX XML Cite \textit{S. Arguillère}, J. Geom. Anal. 30, No. 3, 2897--2938 (2020; Zbl 1446.49021) Full Text: DOI arXiv OpenURL
Frankowska, Hélène; Zhang, Xu Necessary conditions for stochastic optimal control problems in infinite dimensions. (English) Zbl 1441.93337 Stochastic Processes Appl. 130, No. 7, 4081-4103 (2020). MSC: 93E20 49J53 60H15 PDF BibTeX XML Cite \textit{H. Frankowska} and \textit{X. Zhang}, Stochastic Processes Appl. 130, No. 7, 4081--4103 (2020; Zbl 1441.93337) Full Text: DOI arXiv OpenURL
Clairon, Quentin; Samson, Adeline Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations. (English) Zbl 1436.62077 Stat. Inference Stoch. Process. 23, No. 1, 105-127 (2020). Reviewer: Alessandro Selvitella (Fort Wayne) MSC: 62F10 60H15 49K20 PDF BibTeX XML Cite \textit{Q. Clairon} and \textit{A. Samson}, Stat. Inference Stoch. Process. 23, No. 1, 105--127 (2020; Zbl 1436.62077) Full Text: DOI OpenURL
Ríos-Zertuche, Rodolfo Characterization of minimizable Lagrangian action functionals and a dual Mather theorem. (English) Zbl 1436.49013 Discrete Contin. Dyn. Syst. 40, No. 5, 2615-2639 (2020). MSC: 49J40 26B40 47J20 49K21 35F21 PDF BibTeX XML Cite \textit{R. Ríos-Zertuche}, Discrete Contin. Dyn. Syst. 40, No. 5, 2615--2639 (2020; Zbl 1436.49013) Full Text: DOI arXiv OpenURL
Arutyunov, Aram; Karamzin, Dmitry A survey on regularity conditions for state-constrained optimal control problems and the non-degenerate maximum principle. (English) Zbl 1435.49006 J. Optim. Theory Appl. 184, No. 3, 697-723 (2020). Reviewer: Suvra Kanti Chakraborty (Kolkata) MSC: 49K21 49-02 PDF BibTeX XML Cite \textit{A. Arutyunov} and \textit{D. Karamzin}, J. Optim. Theory Appl. 184, No. 3, 697--723 (2020; Zbl 1435.49006) Full Text: DOI OpenURL
Ghosh, M.; Olaniyi, S.; Obabiyi, O. S. Mathematical analysis of reinfection and relapse in malaria dynamics. (English) Zbl 1433.92053 Appl. Math. Comput. 373, Article ID 125044, 18 p. (2020). MSC: 92D30 34D23 49K15 49N90 92C60 34C60 PDF BibTeX XML Cite \textit{M. Ghosh} et al., Appl. Math. Comput. 373, Article ID 125044, 18 p. (2020; Zbl 1433.92053) Full Text: DOI OpenURL
Breitenbach, Tim; Borzì, Alfio A sequential quadratic Hamiltonian scheme for solving non-smooth quantum control problems with sparsity. (English) Zbl 1480.81063 J. Comput. Appl. Math. 369, Article ID 112583, 13 p. (2020). MSC: 81Q93 65K10 49K15 34H05 70Q05 PDF BibTeX XML Cite \textit{T. Breitenbach} and \textit{A. Borzì}, J. Comput. Appl. Math. 369, Article ID 112583, 13 p. (2020; Zbl 1480.81063) Full Text: DOI OpenURL
Gün Polat, Gülden; Özer, Teoman The group-theoretical analysis of nonlinear optimal control problems with Hamiltonian formalism. (English) Zbl 1436.70003 J. Nonlinear Math. Phys. 27, No. 1, 106-129 (2020). MSC: 70G65 93C10 91B62 49K20 49N90 PDF BibTeX XML Cite \textit{G. Gün Polat} and \textit{T. Özer}, J. Nonlinear Math. Phys. 27, No. 1, 106--129 (2020; Zbl 1436.70003) Full Text: DOI OpenURL
Jeremić, Bojan; Radulović, Radoslav; Zorić, Nemanja; Dražić, Milan Realizing brachistochronic planar motion of a variable mass nonholonomic mechanical system by an ideal holonomic constraint with restricted reaction. (English) Zbl 07536946 Filomat 33, No. 14, 4387-4401 (2019). MSC: 49K15 49M30 PDF BibTeX XML Cite \textit{B. Jeremić} et al., Filomat 33, No. 14, 4387--4401 (2019; Zbl 07536946) Full Text: DOI OpenURL
Chen, Li; Wang, Jiandong Maximum principle for delayed stochastic mean-field control problem with state constraint. (English) Zbl 1485.93625 Adv. Difference Equ. 2019, Paper No. 348, 25 p. (2019). MSC: 93E20 60H10 49K45 49N10 PDF BibTeX XML Cite \textit{L. Chen} and \textit{J. Wang}, Adv. Difference Equ. 2019, Paper No. 348, 25 p. (2019; Zbl 1485.93625) Full Text: DOI OpenURL
Levskii, M. V. Optimal control of a spacecraft orientation taking into account the energy of rotation. (English. Russian original) Zbl 07309398 Mech. Solids 54, No. 2, 144-156 (2019); translation from Prikl. Mat. Mekh. 82, No. 6, 690-705 (2018). MSC: 70-XX PDF BibTeX XML Cite \textit{M. V. Levskii}, Mech. Solids 54, No. 2, 144--156 (2019; Zbl 07309398); translation from Prikl. Mat. Mekh. 82, No. 6, 690--705 (2018) Full Text: DOI OpenURL
Tian, Xue; Zhang, Yi Noether’s theorem for fractional Herglotz variational principle in phase space. (English) Zbl 1448.70051 Chaos Solitons Fractals 119, 50-54 (2019). MSC: 70H33 70H30 49S05 49K20 26A33 PDF BibTeX XML Cite \textit{X. Tian} and \textit{Y. Zhang}, Chaos Solitons Fractals 119, 50--54 (2019; Zbl 1448.70051) Full Text: DOI OpenURL
Belyakov, Anton O. On necessary optimality conditions for Ramsey-type problems. (English) Zbl 1448.91177 Ural Math. J. 5, No. 1, 24-30 (2019). MSC: 91B64 49K15 PDF BibTeX XML Cite \textit{A. O. Belyakov}, Ural Math. J. 5, No. 1, 24--30 (2019; Zbl 1448.91177) Full Text: DOI MNR Link OpenURL
Azamov, Abdulla A.; Bakhramov, Jasurbek A.; Akhmedov, Odiljon S. On the Chernous’ko time-optimal problem for the equation of heat conductivity in a rod. (English) Zbl 1448.49027 Ural Math. J. 5, No. 1, 13-23 (2019). MSC: 49K20 35K05 74F05 35Q74 74K10 PDF BibTeX XML Cite \textit{A. A. Azamov} et al., Ural Math. J. 5, No. 1, 13--23 (2019; Zbl 1448.49027) Full Text: DOI MNR OpenURL
Prilepko, A. I. Control and observation problems in Banach spaces. Optimal control and maximum principle. Applications to ordinary differential equations in \(\mathbb{R}^n\). (English. Russian original) Zbl 1440.49030 Differ. Equ. 55, No. 12, 1630-1640 (2019); translation from Differ. Uravn. 55, No. 12, 1683-1692 (2019). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K27 49K15 49-02 49J21 49J27 49K21 93B05 93B07 93C25 PDF BibTeX XML Cite \textit{A. I. Prilepko}, Differ. Equ. 55, No. 12, 1630--1640 (2019; Zbl 1440.49030); translation from Differ. Uravn. 55, No. 12, 1683--1692 (2019) Full Text: DOI OpenURL
Dykhta, Vladimir; Sorokin, Stepan Feedback minimum principle for optimal control problems in discrete-time systems and its applications. (English) Zbl 1439.49065 Khachay, Michael (ed.) et al., Mathematical optimization theory and operations research. 18th international conference, MOTOR 2019, Ekaterinburg, Russia, July 8–12, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11548, 449-460 (2019). MSC: 49N35 PDF BibTeX XML Cite \textit{V. Dykhta} and \textit{S. Sorokin}, Lect. Notes Comput. Sci. 11548, 449--460 (2019; Zbl 1439.49065) Full Text: DOI OpenURL
Bonnet, Benoît A Pontryagin maximum principle in Wasserstein spaces for constrained optimal control problems. (English) Zbl 1442.49025 ESAIM, Control Optim. Calc. Var. 25, Paper No. 52, 38 p. (2019). Reviewer: Hannemann-Tamás (Aachen) MSC: 49K20 49K27 49K45 58E25 49J52 PDF BibTeX XML Cite \textit{B. Bonnet}, ESAIM, Control Optim. Calc. Var. 25, Paper No. 52, 38 p. (2019; Zbl 1442.49025) Full Text: DOI arXiv OpenURL
Lutoshkin, Igor’ Vikotorovich; Yamaltdinova, Nailya Rinatovna Mathematical model of multichannel advertising management with continuously distributed lags. (Russian. English summary) Zbl 1443.90234 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 12, No. 4, 52-66 (2019). MSC: 90B60 91B55 49K21 49J21 PDF BibTeX XML Cite \textit{I. V. Lutoshkin} and \textit{N. R. Yamaltdinova}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 12, No. 4, 52--66 (2019; Zbl 1443.90234) Full Text: DOI MNR OpenURL
Mardanov, M. J.; Melikov, T. K.; Malik, S. T. On the theory of optimal processes in discrete systems. (English. Russian original) Zbl 1433.49028 Math. Notes 106, No. 3, 390-401 (2019); translation from Mat. Zametki 106, No. 3, 409-423 (2019). MSC: 49K15 93C15 93C55 PDF BibTeX XML Cite \textit{M. J. Mardanov} et al., Math. Notes 106, No. 3, 390--401 (2019; Zbl 1433.49028); translation from Mat. Zametki 106, No. 3, 409--423 (2019) Full Text: DOI OpenURL
Levskii, M. V. Restricted quadratic optimal control of a spacecraft turning in a fixed time period. (English. Russian original) Zbl 1432.49069 J. Comput. Syst. Sci. Int. 58, No. 1, 126-146 (2019); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2019, No. 1, 131-152 (2019). MSC: 49S05 49K15 70G75 PDF BibTeX XML Cite \textit{M. V. Levskii}, J. Comput. Syst. Sci. Int. 58, No. 1, 126--146 (2019; Zbl 1432.49069); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2019, No. 1, 131--152 (2019) Full Text: DOI OpenURL
Dmitruk, A. V.; Osmolovskii, N. P. Variations of the \(v\)-change of time in problems with state constraints. (English. Russian original) Zbl 1431.49024 Proc. Steklov Inst. Math. 305, Suppl. 1, S49-S64 (2019); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 1, 76-92 (2018). MSC: 49K15 PDF BibTeX XML Cite \textit{A. V. Dmitruk} and \textit{N. P. Osmolovskii}, Proc. Steklov Inst. Math. 305, S49--S64 (2019; Zbl 1431.49024); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 24, No. 1, 76--92 (2018) Full Text: DOI OpenURL
Bahaa, G. M. Optimal control problem and maximum principle for fractional order cooperative systems. (English) Zbl 1463.49005 Kybernetika 55, No. 2, 337-358 (2019). MSC: 49J20 35R11 49J15 49K20 93C20 PDF BibTeX XML Cite \textit{G. M. Bahaa}, Kybernetika 55, No. 2, 337--358 (2019; Zbl 1463.49005) Full Text: DOI Link OpenURL
Choutri, Salah Eddine; Djehiche, Boualem; Tembine, Hamidou Optimal control and zero-sum games for Markov chains of mean-field type. (English) Zbl 1427.60105 Math. Control Relat. Fields 9, No. 3, 571-605 (2019). MSC: 60H10 60H07 49N90 49K45 PDF BibTeX XML Cite \textit{S. E. Choutri} et al., Math. Control Relat. Fields 9, No. 3, 571--605 (2019; Zbl 1427.60105) Full Text: DOI arXiv OpenURL
Wang, Lijuan; Yan, Qishu Optimal control problem for exact synchronization of parabolic system. (English) Zbl 1427.93042 Math. Control Relat. Fields 9, No. 3, 411-424 (2019). MSC: 93B05 93C20 49K20 35B50 35K40 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Q. Yan}, Math. Control Relat. Fields 9, No. 3, 411--424 (2019; Zbl 1427.93042) Full Text: DOI OpenURL
Harroudi, Sanaa; Bentaleb, Dounia; Tabit, Youssef; Amine, Saida; Allali, Karam Optimal control of an HIV infection model with the adaptive immune response and two saturated rates. (English) Zbl 1432.49027 Int. J. Math. Comput. Sci. 14, No. 4, 787-807 (2019). MSC: 49K15 49N90 92C60 34C60 PDF BibTeX XML Cite \textit{S. Harroudi} et al., Int. J. Math. Comput. Sci. 14, No. 4, 787--807 (2019; Zbl 1432.49027) Full Text: Link OpenURL
Miller, Enzo; Pham, Huyên Linear-quadratic McKean-Vlasov stochastic differential games. (English) Zbl 1427.91026 Yin, George (ed.) et al., Modeling, stochastic control, optimization, and applications. Selected papers based on invited talks given at the IMA workshop in modeling, stochastic control, optimization, and related applications, Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN, USA, May 1 – June 30, 2018. Cham: Springer. IMA Vol. Math. Appl. 164, 451-481 (2019). MSC: 91A15 91A23 91A06 60H10 PDF BibTeX XML Cite \textit{E. Miller} and \textit{H. Pham}, IMA Vol. Math. Appl. 164, 451--481 (2019; Zbl 1427.91026) Full Text: DOI arXiv OpenURL
Bettiol, Piernicola; Mariconda, Carlo On a new necessary condition in the calculus of variations for Lagrangians that are highly discontinuous in the state and velocity. (English) Zbl 1428.49024 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 30, No. 3, 649-663 (2019). MSC: 49K15 49J45 49N60 49K05 PDF BibTeX XML Cite \textit{P. Bettiol} and \textit{C. Mariconda}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 30, No. 3, 649--663 (2019; Zbl 1428.49024) Full Text: DOI OpenURL
Wang, Shi’an; Ahmed, N. U. Optimal relaxed control for a class of nonlinear and noncovex dynamic systems. (English) Zbl 1425.93117 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 4, 279-290 (2019). MSC: 93C10 93C15 49J15 49K15 PDF BibTeX XML Cite \textit{S. Wang} and \textit{N. U. Ahmed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 4, 279--290 (2019; Zbl 1425.93117) Full Text: Link Link OpenURL
Khailov, E. N.; Grigorieva, E. V. On a third-order singular arc of optimal control in a minimization problem for a mathematical model of psoriasis treatment. (English. Russian original) Zbl 1420.49051 Proc. Steklov Inst. Math. 304, 281-291 (2019); translation from Tr. Mat. Inst. Steklova 304, 298-308 (2019). MSC: 49S05 49J45 92C37 49K15 49K30 PDF BibTeX XML Cite \textit{E. N. Khailov} and \textit{E. V. Grigorieva}, Proc. Steklov Inst. Math. 304, 281--291 (2019; Zbl 1420.49051); translation from Tr. Mat. Inst. Steklova 304, 298--308 (2019) Full Text: DOI OpenURL
Rossi, Riccarda; Savaré, Giuseppe; Segatti, Antonio; Stefanelli, Ulisse Weighted energy-dissipation principle for gradient flows in metric spaces. (English. French summary) Zbl 1423.35007 J. Math. Pures Appl. (9) 127, 1-66 (2019). Reviewer: Dian K. Palagachev (Bari) MSC: 35A15 35K55 49K20 49K27 93C10 PDF BibTeX XML Cite \textit{R. Rossi} et al., J. Math. Pures Appl. (9) 127, 1--66 (2019; Zbl 1423.35007) Full Text: DOI arXiv OpenURL
Dmitruk, Andrei V.; Osmolovskii, Nikolai P. Proof of the maximum principle for a problem with state constraints by the \(v\)-change of time variable. (English) Zbl 1419.49021 Discrete Contin. Dyn. Syst., Ser. B 24, No. 5, 2189-2204 (2019). MSC: 49K15 49K27 46N10 PDF BibTeX XML Cite \textit{A. V. Dmitruk} and \textit{N. P. Osmolovskii}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 5, 2189--2204 (2019; Zbl 1419.49021) Full Text: DOI OpenURL
Cardin, Franco; Spiro, Andrea Pontryagin maximum principle and Stokes theorem. (English) Zbl 1431.49022 J. Geom. Phys. 142, 274-286 (2019). Reviewer: A. Omrane (Cayenne) MSC: 49K15 34H05 PDF BibTeX XML Cite \textit{F. Cardin} and \textit{A. Spiro}, J. Geom. Phys. 142, 274--286 (2019; Zbl 1431.49022) Full Text: DOI arXiv OpenURL
Liu, Fang; Jiang, Feida Parabolic biased infinity Laplacian equation related to the biased tug-of-war. (English) Zbl 1412.35163 Adv. Nonlinear Stud. 19, No. 1, 89-112 (2019). MSC: 35K20 35D40 35K67 35Q91 49K20 35J57 35J70 49N60 PDF BibTeX XML Cite \textit{F. Liu} and \textit{F. Jiang}, Adv. Nonlinear Stud. 19, No. 1, 89--112 (2019; Zbl 1412.35163) Full Text: DOI OpenURL
Arutyunov, Aram V.; Zhukovskiy, Sergey E. Variational principles in analysis and existence of minimizers for functions on metric spaces. (English) Zbl 1451.58007 SIAM J. Optim. 29, No. 2, 994-1016 (2019). Reviewer: Mohsen Timoumi (Monastir) MSC: 58E30 49K27 PDF BibTeX XML Cite \textit{A. V. Arutyunov} and \textit{S. E. Zhukovskiy}, SIAM J. Optim. 29, No. 2, 994--1016 (2019; Zbl 1451.58007) Full Text: DOI OpenURL
Arutyunov, Aram; Karamzin, Dmitry; Lobo Pereira, Fernando Optimal impulsive control. The extension approach. (English) Zbl 1423.49001 Lecture Notes in Control and Information Sciences 477. Cham: Springer (ISBN 978-3-030-02259-4/hbk; 978-3-030-02260-0/ebook). xxiii, 174 p. (2019). Reviewer: Svetlana A. Kravchenko (Minsk) MSC: 49-02 49N25 49J15 49K15 49K21 PDF BibTeX XML Cite \textit{A. Arutyunov} et al., Optimal impulsive control. The extension approach. Cham: Springer (2019; Zbl 1423.49001) Full Text: DOI OpenURL
Sethi, Suresh P. Optimal control theory. Applications to management science and economics. 3rd edition. (English) Zbl 1412.49001 Cham: Springer (ISBN 978-3-319-98236-6/hbk; 978-3-319-98237-3/ebook). xxvii, 565 p. (2019). Reviewer: Doina Carp (Constanta) MSC: 49-01 91-01 49K15 49N10 91B76 91B62 90C30 91A10 90B30 90B60 PDF BibTeX XML Cite \textit{S. P. Sethi}, Optimal control theory. Applications to management science and economics. 3rd edition. Cham: Springer (2019; Zbl 1412.49001) Full Text: DOI OpenURL