zbMATH — the first resource for mathematics

Primary and secondary instabilities of the mixed mode solution in a reaction diffusion system near the codimension-two Turing-Hopf point. (English) Zbl 1448.35031
Summary: Space-time structures near the codimension-two Turing-Hopf point (CTHP) that combine a spatial pattern with temporal oscillations are studied for a particular reaction diffusion (RD) system, which has been useful to model many different biological processes. We show that in this sytem, these Mixed mode solutions arise in regions of the parameter space where the analysis of the linearized RD system predicts only Turing or Hopf structures. Therefore, a standard weakly non linear analysis is used to find the amplitude equations describing the existence and stability regions of these three primary solutions and to study how they are affected by the proximity to the CTHP, the relative strength of the nonlinear terms of the system and the diffusion coefficient. By means of exhaustive numerical calculations, it is shown that the stability analysis to homogeneous perturbations qualitatively predicts the region where Mixed solutions arise. We also show that if the size of the domain grows, non-homogeneous perturbations become important and secondary instabilities can arise in the system. Two types of secondary structures are numerically identified: (1) spatial patterns that change its effective wave number while they oscillate as an Eckhaus instability, or (2) a chaotic oscillations mixed with a relatively fixed spatial pattern in a Benjamin-Feir-Newell phase turbulence. Our study provides a characterization of the time oscillating patterns observed numerically in the RD system studied here and a panoramic view of the Mixed mode primary and secondary instabilities that arise near the CTHP.
35B32 Bifurcations in context of PDEs
35K57 Reaction-diffusion equations
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
37M05 Simulation of dynamical systems
PDF BibTeX Cite
Full Text: DOI
[1] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev Mod Phys, 65, 3, 851 (1993) · Zbl 1371.37001
[2] Turing, A. M., The chemical basis of morphogenesis, Philos Trans R Soc London Ser B Biol Sci, 237, 641, 37-72 (1952) · Zbl 1403.92034
[3] De Wit, A.; Dewel, G.; Borckmans, P., Chaotic Turing-Hopf mixed mode, Phys Rev E, 48, 6, R4191 (1993)
[4] De Wit, A.; Lima, D.; Dewel, G.; Borckmans, P., Spatiotemporal dynamics near a codimension-two point, Phys Rev E, 54, 1, 261 (1996)
[5] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator – prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J Theor Biol, 245, 2, 220-229 (2007)
[6] Kolodner, P., Coexisting traveling waves and steady rolls in binary-fluid convection, Phys Rev E, 48, 2, R665 (1993)
[7] Heidemann, G.; Bode, M.; Purwins, H.-G., Fronts between Hopf-and Turing-type domains in a two-component reaction-diffusion system, Phys Lett A, 177, 3, 225-230 (1993)
[8] Perraud, J.-J.; De Wit, A.; Dulos, E.; De Kepper, P.; Dewel, G.; Borckmans, P., One-dimensional “spirals”: novel asynchronous chemical wave sources, Phys Rev Lett, 71, 8, 1272 (1993)
[9] Kepper, P. D.; Perraud, J.-J.; Rudovics, B.; Dulos, E., Experimental study of stationary Turing patterns and their interaction with traveling waves in a chemical system, Int J Bifurcation Chaos, 4, 05, 1215-1231 (1994) · Zbl 0877.92032
[10] Lacitignola, D.; Bozzini, B.; Sgura, I., Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, Eur J Appl Math, 26, 2, 143-173 (2015) · Zbl 1383.92099
[11] Meixner, M.; De Wit, A.; Bose, S.; Schöll, E., Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations, Phys Rev E, 55, 6, 6690 (1997)
[12] Murray, J. D., Mathematical biology. II Spatial models and biomedical applications, Interdisciplinary Applied Mathematics, 18 (2001), Springer-Verlag New York Incorporated
[13] Leppänen, T., Computational studies of pattern formation in Turing systems (2004), Helsinki University of Technology
[14] Lengyel, I.; Epstein, I. R., A chemical approach to designing Turing patterns in reaction-diffusion systems, Proc Natl Acad Sci, 89, 9, 3977-3979 (1992) · Zbl 0745.92002
[15] Pena, B.; Perez-Garcia, C., Stability of Turing patterns in the brusselator model, Phys Rev E, 64, 5, 056213 (2001)
[16] Kondo, S.; Miura, T., Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329, 5999, 1616-1620 (2010) · Zbl 1226.35077
[17] Barrio, R. A.; Varea, C.; Aragón, J. L.; Maini, P. K., A two-dimensional numerical study of spatial pattern formation in interacting Turing systems, Bull Math Biol, 61, 3, 483-505 (1999) · Zbl 1323.92026
[18] Aragón, J. L.; Barrio, R. A.; Woolley, T. E.; Baker, R. E.; Maini, P. K., Nonlinear effects on turing patterns: time oscillations and chaos, Phys Rev E, 86, 2, 026201 (2012)
[19] Liu, R.-T.; Liaw, S.-S.; Maini, P. K., Oscillatory Turing patterns in a simple reaction-diffusion system, J Korean Phys Soc, 50, 1, 234-238 (2007)
[20] Just, W.; Bose, M.; Bose, S.; Engel, H.; Schöll, E., Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system, Phys Rev E, 64, 2, 026219 (2001)
[21] Meixner, M.; Bose, S.; Schöll, E., Analysis of complex and chaotic patterns near a codimension-2 Turing-Hopf point in a reaction-diffusion model, Phys D Nonlinear Phenom, 109, 1-2, 128-138 (1997) · Zbl 0925.58085
[22] Kidachi, H., On mode interactions in reaction diffusion equation with nearly degenerate bifurcations, Prog Theor Phys, 63, 4, 1152-1169 (1980) · Zbl 1059.35513
[23] De Wit, A.; Dewel, G., Brisure de symetrie spatiale et dynamique spatio-temporelle dans les systemes reaction-diffusion (1993), Université libre de Bruxelles
[24] Stuart, J. T.; DiPrima, R. C., The Eckhaus and Benjamin-Feir resonance mechanisms, Proc R Soc A, 362, 1708, 27-41 (1978)
[25] Montgomery, K.; Silber, M., Feedback control of travelling wave solutions of the complex Ginzburg-Landau equation, Nonlinearity, 17, 6, 2225 (2004) · Zbl 1071.93022
[26] Di Patti, F.; Fanelli, D.; Carletti, T., Drift-induced Benjamin-Feir instabilities, EPL (Europhys Lett), 114, 6, 68003 (2016)
[28] Janiaud, B.; Pumir, A.; Bensimon, D.; Croquette, V.; Richter, H.; Kramer, L., The Eckhaus instability for traveling waves, Phys D Nonlinear Phenom, 55, 3-4, 269-286 (1992) · Zbl 0800.76015
[29] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev Mod Phys, 74, 1, 99 (2002) · Zbl 1205.35299
[30] Barrio, R.; Dominguez-Roman, I.; Quiroz-Juarez, M.; Jimenez-Ramirez, O.; Vazquez-Medina, R.; Aragon, J., Modelling the electrical activity of the heart, Math Biol Biol Phys, 51 (2017)
[31] Rueda-Contreras, M. D.; Romero-Arias, J. R.; Aragón, J. L.; Barrio, R. A., Curvature-driven spatial patterns in growing 3d domains: a mechanochemical model for phyllotaxis, PloS One, 13, 8, e0201746 (2018)
[32] Ledesma-Durán, A.; Juárez-Valencia, L.-H.; Morales-Malacara, J.-B.; Santamaría-Holek, I., The interplay between phenotypic and ontogenetic plasticities can be assessed using reaction-diffusion models, J Biol Phys, 43, 2, 247-264 (2017)
[33] Vazquez-Medina, R.; Jimenez-Ramirez, O.; Quiroz-Juarez, M.; Aragón, J., Arbitrary waveform generator biologically inspired, Chaos Solitons Fractals, 51, 36-51 (2013)
[34] Kuramoto, Y.; Tsuzuki, T., On the formation of dissipative structures in reaction-diffusion systems: reductive perturbation approach, Prog Theor Phys, 54, 3, 687-699 (1975)
[35] Schober, K. L.H.; Zimmermann, W., Pattern competition and the decay of unstable patterns in quasi-one-dimensional systems, Phys D Nonlinear Phenom, 31, 2, 212-226 (1988) · Zbl 0645.76051
[37] Torcini, A.; Frauenkron, H.; P, G., Studies of phase turbulence in the one-dimensional complex Ginzburg-Landau equation, Phys Rev E, 55, 5, 5073 (1997)
[38] Lima, D.; De Wit, A.; Dewel, G.; Borckmans, P., Chaotic spatially subharmonic oscillations, Phys Rev E, 53, 2, R1305 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.