Tigan, G.; Lazureanu, C.; Munteanu, F.; Sterbeti, C.; Florea, A. Analysis of a class of Kolmogorov systems. (English) Zbl 07284899 Nonlinear Anal., Real World Appl. 57, Article ID 103202, 17 p. (2021). MSC: 34C60 92D25 34C05 34C23 34D20 34D45 PDF BibTeX XML Cite \textit{G. Tigan} et al., Nonlinear Anal., Real World Appl. 57, Article ID 103202, 17 p. (2021; Zbl 07284899) Full Text: DOI
Shang, Zuchong; Qiao, Yuanhua; Duan, Lijuan; Miao, Jun Stability and bifurcation analysis in a nonlinear harvested predator-prey model with simplified Holling type IV functional response. (English) Zbl 07281769 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050205, 23 p. (2020). MSC: 34C60 92D25 34C05 34C23 34D20 34A37 PDF BibTeX XML Cite \textit{Z. Shang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050205, 23 p. (2020; Zbl 07281769) Full Text: DOI
Zhang, Jun; Zhang, Weinian Dynamics of a predator-prey model with hunting cooperation and Allee effects in predators. (English) Zbl 07281763 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050199, 23 p. (2020). MSC: 34C60 92D25 34C05 34D20 34C23 34D05 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{W. Zhang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050199, 23 p. (2020; Zbl 07281763) Full Text: DOI
Anacleto, María; Vidal, Claudio Dynamics of a delayed predator-prey model with Allee effect and Holling type II functional response. (English) Zbl 07271477 Math. Methods Appl. Sci. 43, No. 9, 5708-5728 (2020). MSC: 34K60 92D25 34K21 34K17 34K18 34K20 34K13 PDF BibTeX XML Cite \textit{M. Anacleto} and \textit{C. Vidal}, Math. Methods Appl. Sci. 43, No. 9, 5708--5728 (2020; Zbl 07271477) Full Text: DOI
Tigan, G.; Lazureanu, C.; Munteanu, F.; Sterbeti, C.; Florea, A. Bifurcation diagrams in a class of Kolmogorov systems. (English) Zbl 1453.37047 Nonlinear Anal., Real World Appl. 56, Article ID 103154, 14 p. (2020). MSC: 37G10 37G15 34C23 37N25 92D25 PDF BibTeX XML Cite \textit{G. Tigan} et al., Nonlinear Anal., Real World Appl. 56, Article ID 103154, 14 p. (2020; Zbl 1453.37047) Full Text: DOI
Dáger, R.; Navarro, V.; Negreanu, M.; Vargas, A. M. Uniform asymptotic behavior of numerical solutions for a predator-prey system with diffusion and chemotaxis. (English) Zbl 07268614 Eng. Anal. Bound. Elem. 120, 82-94 (2020). MSC: 65 34 PDF BibTeX XML Cite \textit{R. Dáger} et al., Eng. Anal. Bound. Elem. 120, 82--94 (2020; Zbl 07268614) Full Text: DOI
Kharbanda, Harsha; Kumar, Sachin Chaos detection and optimal control in a cannibalistic prey-predator system with harvesting. (English) Zbl 1448.92208 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050171, 24 p. (2020). MSC: 92D25 91B76 34D23 34C23 34C28 PDF BibTeX XML Cite \textit{H. Kharbanda} and \textit{S. Kumar}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050171, 24 p. (2020; Zbl 1448.92208) Full Text: DOI
Yao, Jinhui; Li, Guihua; Guo, Gang Higher codimension bifurcation analysis of predator-prey systems with nonmonotonic functional responses. (English) Zbl 1453.34074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050167, 14 p. (2020). MSC: 34C60 34C05 34C23 34C20 34D20 92D25 PDF BibTeX XML Cite \textit{J. Yao} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 12, Article ID 2050167, 14 p. (2020; Zbl 1453.34074) Full Text: DOI
Jiang, Jiao; Zhang, Wenjing; Yu, Pei Tristable phenomenon in a predator-prey system arising from multiple limit cycles bifurcation. (English) Zbl 1452.34053 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050129, 23 p. (2020). MSC: 34C60 92D25 34C05 34C23 34D20 34C20 PDF BibTeX XML Cite \textit{J. Jiang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050129, 23 p. (2020; Zbl 1452.34053) Full Text: DOI
Chakraborty, Prabir; Ghosh, Uttam; Sarkar, Susmita Stability and bifurcation analysis of a discrete prey-predator model with square-root functional response and optimal harvesting. (English) Zbl 1445.92234 J. Biol. Syst. 28, No. 1, 91-110 (2020). MSC: 92D25 34C23 91B76 PDF BibTeX XML Cite \textit{P. Chakraborty} et al., J. Biol. Syst. 28, No. 1, 91--110 (2020; Zbl 1445.92234) Full Text: DOI
Zhao, Yihan; Xia, Yuanpei; Yang, Zhichun Asymptotic behavior of stochastic three-species predator-prey systems with white and Lévy noise. (English) Zbl 1451.34072 Electron. J. Differ. Equ. 2020, Paper No. 71, 17 p. (2020). MSC: 34C60 34F05 92D25 34C11 34D05 34D20 60H10 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Electron. J. Differ. Equ. 2020, Paper No. 71, 17 p. (2020; Zbl 1451.34072) Full Text: Link
Saffarzadeh, Masoud; Heydari, Mohammad; Loghmani, Ghasem Barid Convergence analysis of an iterative algorithm to solve system of nonlinear stochastic Itô-Volterra integral equations. (English) Zbl 1448.60129 Math. Methods Appl. Sci. 43, No. 8, 5212-5233 (2020). MSC: 60H10 60H05 60H20 65C30 PDF BibTeX XML Cite \textit{M. Saffarzadeh} et al., Math. Methods Appl. Sci. 43, No. 8, 5212--5233 (2020; Zbl 1448.60129) Full Text: DOI
Mokni, Karima; Elaydi, Saber; Ch-Chaoui, Mohamed; Eladdadi, Amina Discrete evolutionary population models: a new approach. (English) Zbl 1442.92106 J. Biol. Dyn. 14, No. 1, 454-478 (2020). MSC: 92D15 92D25 91A22 91A80 PDF BibTeX XML Cite \textit{K. Mokni} et al., J. Biol. Dyn. 14, No. 1, 454--478 (2020; Zbl 1442.92106) Full Text: DOI
Pujaru, Kanisha; Kar, Tapan Kumar Impacts of predator-prey interaction on managing maximum sustainable yield and resilience. (English) Zbl 1444.92097 Nonlinear Anal., Model. Control 25, No. 3, 400-416 (2020). MSC: 92D25 92D40 91B76 PDF BibTeX XML Cite \textit{K. Pujaru} and \textit{T. K. Kar}, Nonlinear Anal., Model. Control 25, No. 3, 400--416 (2020; Zbl 1444.92097) Full Text: DOI
Kaushik, Rajat; Banerjee, Sandip Predator-prey model with prey group defense and non-linear predator harvesting. (English) Zbl 1447.92345 Manna, Santanu (ed.) et al., Mathematical modelling and scientific computing with applications. Proceedings of the international conference, ICMMSC 2018, Indore, India, July 19–21, 2018. Singapore: Springer. Springer Proc. Math. Stat. 308, 109-125 (2020). MSC: 92D25 34C23 34D20 91B76 PDF BibTeX XML Cite \textit{R. Kaushik} and \textit{S. Banerjee}, Springer Proc. Math. Stat. 308, 109--125 (2020; Zbl 1447.92345) Full Text: DOI
Valenzuela, Luis Miguel; Blé, Gamaliel; Falconi, Manuel On the bifurcation structure of a Leslie-Tanner model with a generalist predator. (English) Zbl 1446.34068 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050088, 17 p. (2020). MSC: 34C60 92D25 34C05 34D20 34C23 PDF BibTeX XML Cite \textit{L. M. Valenzuela} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050088, 17 p. (2020; Zbl 1446.34068) Full Text: DOI
Ma, Zhihui Hopf bifurcation of a generalized delay-induced predator-prey system with habitat complexity. (English) Zbl 1446.34103 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050082, 20 p. (2020). MSC: 34K60 92D25 34K21 34K18 34K20 34K13 34K25 37C60 PDF BibTeX XML Cite \textit{Z. Ma}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2050082, 20 p. (2020; Zbl 1446.34103) Full Text: DOI
Wang, Yang; Zou, Xingfu On a predator-prey system with digestion delay and anti-predation strategy. (English) Zbl 1445.34121 J. Nonlinear Sci. 30, No. 4, 1579-1605 (2020). MSC: 34K60 92D25 34K13 34K18 34K20 34K25 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{X. Zou}, J. Nonlinear Sci. 30, No. 4, 1579--1605 (2020; Zbl 1445.34121) Full Text: DOI
Zhang, Tianwei; Yang, Li; Xu, Lijun Stage-structured control on a class of predator-prey system in almost periodic environment. (English) Zbl 1444.34066 Int. J. Control 93, No. 6, 1442-1460 (2020). MSC: 34C60 34D05 34D20 34C27 92D25 47N20 34D23 PDF BibTeX XML Cite \textit{T. Zhang} et al., Int. J. Control 93, No. 6, 1442--1460 (2020; Zbl 1444.34066) Full Text: DOI
Li, Wenjie; Huang, Lihong; Ji, Jinchen Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. (English) Zbl 1443.34090 Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2639-2664 (2020). MSC: 34K60 92D25 34K39 34K13 34K20 34K09 47N20 PDF BibTeX XML Cite \textit{W. Li} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 7, 2639--2664 (2020; Zbl 1443.34090) Full Text: DOI
Banerjee, Ritwick; Das, Pritha; Mukherjee, Debasis Global dynamics of a Holling Type-III two prey-one predator discrete model with optimal harvest strategy. (English) Zbl 1434.37048 Nonlinear Dyn. 99, No. 4, 3285-3300 (2020). MSC: 37N25 92D25 91B76 34D23 PDF BibTeX XML Cite \textit{R. Banerjee} et al., Nonlinear Dyn. 99, No. 4, 3285--3300 (2020; Zbl 1434.37048) Full Text: DOI
Wang, Kexin Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type II response and infinite delays. (English) Zbl 1441.34090 Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1699-1714 (2020). MSC: 34K60 92D25 34K50 34K35 34K20 34K27 93B52 34K21 PDF BibTeX XML Cite \textit{K. Wang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 5, 1699--1714 (2020; Zbl 1441.34090) Full Text: DOI
Li, Jianquan; Zhu, Xue; Lin, Xiaolin; Li, Jia Impact of cannibalism on dynamics of a structured predator-prey system. (English) Zbl 07193064 Appl. Math. Modelling 78, 1-19 (2020). MSC: 92 34 PDF BibTeX XML Cite \textit{J. Li} et al., Appl. Math. Modelling 78, 1--19 (2020; Zbl 07193064) Full Text: DOI
Jiang, Xiaobo; Zu, Li; Jiang, Daqing; O’Regan, Donal Analysis of a stochastic Holling type II predator-prey model under regime switching. (English) Zbl 1441.34058 Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2171-2197 (2020). MSC: 34C60 92D25 34F05 34D05 PDF BibTeX XML Cite \textit{X. Jiang} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 3, 2171--2197 (2020; Zbl 1441.34058) Full Text: DOI
Cai, Min; Yan, Shuling; Du, Zengji Positive periodic solutions of an eco-epidemic model with Crowley-Martin type functional response and disease in the prey. (English) Zbl 1437.34056 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 56, 20 p. (2020). MSC: 34C60 92D25 92D30 34C25 37C60 47N20 PDF BibTeX XML Cite \textit{M. Cai} et al., Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 56, 20 p. (2020; Zbl 1437.34056) Full Text: DOI
Feng, Tao; Meng, Xinzhu; Zhang, Tonghua; Qiu, Zhipeng Analysis of the predator-prey interactions: a stochastic model incorporating disease invasion. (English) Zbl 1437.34058 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 55, 20 p. (2020). MSC: 34C60 92D25 34F05 34D05 60H10 PDF BibTeX XML Cite \textit{T. Feng} et al., Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 55, 20 p. (2020; Zbl 1437.34058) Full Text: DOI
López-Gómez, Julián; Muñoz-Hernández, Eduardo; Zanolin, Fabio On the applicability of the Poincaré-Birkhoff twist theorem to a class of planar periodic predator-prey models. (English) Zbl 1441.34060 Discrete Contin. Dyn. Syst. 40, No. 4, 2393-2419 (2020). Reviewer: Changjin Xu (Guiyang) MSC: 34C60 34C25 37E40 92D25 37C60 PDF BibTeX XML Cite \textit{J. López-Gómez} et al., Discrete Contin. Dyn. Syst. 40, No. 4, 2393--2419 (2020; Zbl 1441.34060) Full Text: DOI
Kajanovičová, Viktória; Novotný, Branislav; Pospíšil, Michal Ramsey model with non-constant population growth. (English) Zbl 1437.91297 Math. Soc. Sci. 104, 40-46 (2020). MSC: 91B62 91D20 49K15 PDF BibTeX XML Cite \textit{V. Kajanovičová} et al., Math. Soc. Sci. 104, 40--46 (2020; Zbl 1437.91297) Full Text: DOI
Hsu, Ting-Hao; Wolkowicz, Gail S. K. A criterion for the existence of relaxation oscillations with applications to predator-prey systems and an epidemic model. (English) Zbl 1450.34024 Discrete Contin. Dyn. Syst., Ser. B 25, No. 4, 1257-1277 (2020). Reviewer: Robert Vrabel (Trnava) MSC: 34C05 34D20 34C26 92D25 34E15 PDF BibTeX XML Cite \textit{T.-H. Hsu} and \textit{G. S. K. Wolkowicz}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 4, 1257--1277 (2020; Zbl 1450.34024) Full Text: DOI
Giné, Jaume; Valls, Claudia Nonlinear oscillations in the modified Leslie-Gower model. (English) Zbl 07155444 Nonlinear Anal., Real World Appl. 51, Article ID 103010, 7 p. (2020). Reviewer: Klaus R. Schneider (Berlin) MSC: 34C60 34C05 34C23 PDF BibTeX XML Cite \textit{J. Giné} and \textit{C. Valls}, Nonlinear Anal., Real World Appl. 51, Article ID 103010, 7 p. (2020; Zbl 07155444) Full Text: DOI
Tiwari, Vandana; Tripathi, Jai Prakash; Mishra, Swati; Upadhyay, Ranjit Kumar Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator-prey systems. (English) Zbl 1433.92042 Appl. Math. Comput. 371, Article ID 124948, 23 p. (2020). MSC: 92D25 92D40 34A34 35B36 34C60 34C23 PDF BibTeX XML Cite \textit{V. Tiwari} et al., Appl. Math. Comput. 371, Article ID 124948, 23 p. (2020; Zbl 1433.92042) Full Text: DOI
Xu, Yifang; Krause, Andrew L.; Van Gorder, Robert A. Generalist predator dynamics under Kolmogorov versus non-Kolmogorov models. (English) Zbl 1429.92121 J. Theor. Biol. 486, Article ID 110060, 9 p. (2020). MSC: 92D25 92D40 34C60 PDF BibTeX XML Cite \textit{Y. Xu} et al., J. Theor. Biol. 486, Article ID 110060, 9 p. (2020; Zbl 1429.92121) Full Text: DOI
López-Gómez, Julián; Muñoz-Hernández, Eduardo Global structure of subharmonics in a class of periodic predator-prey models. (English) Zbl 1431.34066 Nonlinearity 33, No. 1, 34-71 (2020). Reviewer: Zhanyuan Hou (London) MSC: 34C60 34C25 34C23 92D25 37C60 PDF BibTeX XML Cite \textit{J. López-Gómez} and \textit{E. Muñoz-Hernández}, Nonlinearity 33, No. 1, 34--71 (2020; Zbl 1431.34066) Full Text: DOI
Pujol, Olivier; Jensen, Andrew Cloud-rain predator-prey interactions: analyzing some properties of the Koren-Feingold model and introduction of a new species-competition bulk system with a Hopf bifurcation. (English) Zbl 1453.86027 Physica D 399, 86-94 (2019). MSC: 86A10 92D25 34C60 34K60 PDF BibTeX XML Cite \textit{O. Pujol} and \textit{A. Jensen}, Physica D 399, 86--94 (2019; Zbl 1453.86027) Full Text: DOI
Zhang, Xiangming; Liu, Zhihua Periodic oscillations in age-structured ratio-dependent predator-prey model with Michaelis-Menten type functional response. (English) Zbl 1448.34137 Physica D 389, 51-63 (2019). MSC: 34K21 34K18 92D25 34K60 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Z. Liu}, Physica D 389, 51--63 (2019; Zbl 1448.34137) Full Text: DOI
Ang, Tau Keong; Safuan, Hamizah M. Harvesting in a toxicated intraguild predator-prey fishery model with variable carrying capacity. (English) Zbl 1448.92163 Chaos Solitons Fractals 126, 158-168 (2019). MSC: 92D25 91B76 34C60 34C23 49N90 PDF BibTeX XML Cite \textit{T. K. Ang} and \textit{H. M. Safuan}, Chaos Solitons Fractals 126, 158--168 (2019; Zbl 1448.92163) Full Text: DOI
Chen, Xiaoxiao; Wang, Xuedi Qualitative analysis and control for predator-prey delays system. (English) Zbl 1448.92184 Chaos Solitons Fractals 123, 361-372 (2019). MSC: 92D25 93C23 34K60 34K20 34K18 34K35 PDF BibTeX XML Cite \textit{X. Chen} and \textit{X. Wang}, Chaos Solitons Fractals 123, 361--372 (2019; Zbl 1448.92184) Full Text: DOI
Djilali, Salih Impact of prey herd shape on the predator-prey interaction. (English) Zbl 1448.92188 Chaos Solitons Fractals 120, 139-148 (2019). MSC: 92D25 34K18 34C23 34K60 PDF BibTeX XML Cite \textit{S. Djilali}, Chaos Solitons Fractals 120, 139--148 (2019; Zbl 1448.92188) Full Text: DOI
Mishra, P.; Raw, S. N.; Tiwari, B. Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators. (English) Zbl 1448.92237 Chaos Solitons Fractals 120, 1-16 (2019). MSC: 92D25 34C23 35B35 34K60 PDF BibTeX XML Cite \textit{P. Mishra} et al., Chaos Solitons Fractals 120, 1--16 (2019; Zbl 1448.92237) Full Text: DOI
Kumar, Sachin; Kharbanda, Harsha Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey. (English) Zbl 1448.92213 Chaos Solitons Fractals 119, 19-28 (2019). MSC: 92D25 34D20 34C23 34C60 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{H. Kharbanda}, Chaos Solitons Fractals 119, 19--28 (2019; Zbl 1448.92213) Full Text: DOI
Söderbacka, G. J.; Petrov, A. S. Review on the behaviour of a many predator-one prey system. (English) Zbl 07273928 Din. Sist., Simferopol’ 9(37), No. 3, 273-288 (2019). MSC: 34C60 92D25 34C23 34C05 34D05 34D20 34D45 PDF BibTeX XML Cite \textit{G. J. Söderbacka} and \textit{A. S. Petrov}, Din. Sist., Simferopol' 9(37), No. 3, 273--288 (2019; Zbl 07273928)
Skvortsova, M. A. Asymptotic properties of solutions in a predator-prey model with two delays. (Russian. English summary) Zbl 1452.34083 Din. Sist., Simferopol’ 9(37), No. 4, 367-389 (2019). MSC: 34K60 34K20 34K25 92D25 34K21 PDF BibTeX XML Cite \textit{M. A. Skvortsova}, Din. Sist., Simferopol' 9(37), No. 4, 367--389 (2019; Zbl 1452.34083)
Liu, Juan; Hu, Jie; Zhao, Qing; Li, Fuzhong Dynamic analysis of the predator-prey system in a polluted environment with impulsive. (Chinese. English summary) Zbl 1449.34148 Math. Pract. Theory 49, No. 22, 294-298 (2019). MSC: 34C60 92D25 34A37 34D05 PDF BibTeX XML Cite \textit{J. Liu} et al., Math. Pract. Theory 49, No. 22, 294--298 (2019; Zbl 1449.34148)
Yue, Zongmin; Wang, Jiao; Lu, Kun Dynamic analysis of a predator-prey system with the Allee effect. (Chinese. English summary) Zbl 1449.34170 Math. Pract. Theory 49, No. 22, 274-283 (2019). MSC: 34C60 34D23 34C23 92D25 34E15 34C27 34C05 34D20 PDF BibTeX XML Cite \textit{Z. Yue} et al., Math. Pract. Theory 49, No. 22, 274--283 (2019; Zbl 1449.34170)
Zhang, Qiumei; Wu, Jiajie Asymptotic behavior of stochastic predator-prey model with epidemic in the predator. (Chinese. English summary) Zbl 1449.34174 J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 4, 27-31 (2019). MSC: 34C60 34D05 34D20 60H10 92D25 92D30 34F05 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{J. Wu}, J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 4, 27--31 (2019; Zbl 1449.34174) Full Text: DOI
Shi, Lili; Liu, Guirong A class of the stochastic predator-prey model with delay and Lévy jump. (Chinese. English summary) Zbl 1449.34294 J. Yunnan Minzu Univ., Nat. Sci. 28, No. 5, 470-474, 490 (2019). MSC: 34K60 34K50 60H10 92D25 34K12 34K25 PDF BibTeX XML Cite \textit{L. Shi} and \textit{G. Liu}, J. Yunnan Minzu Univ., Nat. Sci. 28, No. 5, 470--474, 490 (2019; Zbl 1449.34294) Full Text: DOI
Zhu, Huan; Gao, Debao Stability and Hopf bifurcation in a time-delayed predator-prey system with stage structures for both predator and prey. (English) Zbl 1449.34306 Chin. J. Eng. Math. 36, No. 6, 693-707 (2019). MSC: 34K60 34K20 34K18 92D25 34K17 34K19 PDF BibTeX XML Cite \textit{H. Zhu} and \textit{D. Gao}, Chin. J. Eng. Math. 36, No. 6, 693--707 (2019; Zbl 1449.34306) Full Text: DOI
Shen, Yixin; Pu, Zhilin; Hu, Huashu Forwards and pullback behaviour of a non-autonomous predator-prey system with the Beddington-DeAngelis functional response. (Chinese. English summary) Zbl 1449.34156 J. Sichuan Norm. Univ., Nat. Sci. 42, No. 3, 312-317 (2019). MSC: 34C60 34D05 34D45 92D25 37C60 PDF BibTeX XML Cite \textit{Y. Shen} et al., J. Sichuan Norm. Univ., Nat. Sci. 42, No. 3, 312--317 (2019; Zbl 1449.34156) Full Text: DOI
Huang, Xiaoyan; Chen, Fengde Note on the stability property of the vanishing equilibrium point of an ecological system consisting of a predator and stage structure prey. (English) Zbl 1449.34141 Ann. Appl. Math. 35, No. 2, 139-144 (2019). MSC: 34C60 34D20 92D40 34C05 PDF BibTeX XML Cite \textit{X. Huang} and \textit{F. Chen}, Ann. Appl. Math. 35, No. 2, 139--144 (2019; Zbl 1449.34141)
Fu, Yingjie; Lan, Guijie; Zhang, Shuwen; Wei, Chunjin Dynamics of a stochastic predator-prey model with pulse input in a polluted environment. (Chinese. English summary) Zbl 1449.34131 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 674-688 (2019). MSC: 34C60 60H10 92D25 34F05 34C11 34C25 34D05 PDF BibTeX XML Cite \textit{Y. Fu} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 674--688 (2019; Zbl 1449.34131)
Lv, Xiaojun; Xie, Haiping; Zhao, Kaihong Eight positive almost periodic solutions to an delay predator-prey system with impulsive and harvesting terms. (Chinese. English summary) Zbl 1449.34291 Acta Anal. Funct. Appl. 21, No. 2, 130-141 (2019). MSC: 34K60 34K14 34K45 92D25 47N20 PDF BibTeX XML Cite \textit{X. Lv} et al., Acta Anal. Funct. Appl. 21, No. 2, 130--141 (2019; Zbl 1449.34291) Full Text: DOI
Dai, Yanfei; Zhao, Yulin; Sang, Bo Four limit cycles in a predator-prey system of Leslie type with generalized Holling type III functional response. (English) Zbl 1432.34064 Nonlinear Anal., Real World Appl. 50, 218-239 (2019). MSC: 34C60 92D25 34C05 34C23 34D20 PDF BibTeX XML Cite \textit{Y. Dai} et al., Nonlinear Anal., Real World Appl. 50, 218--239 (2019; Zbl 1432.34064) Full Text: DOI arXiv
Li, Yang-Yang; Zhuo, Xiang-Lai; Zhang, Feng-Xue Multiperiodicity to a certain delayed predator-prey model. (English) Zbl 1432.34109 Qual. Theory Dyn. Syst. 18, No. 3, 793-811 (2019). MSC: 34K60 92D25 34K13 47N20 PDF BibTeX XML Cite \textit{Y.-Y. Li} et al., Qual. Theory Dyn. Syst. 18, No. 3, 793--811 (2019; Zbl 1432.34109) Full Text: DOI
Ackleh, Azmy S.; Hossain, Md Istiaq; Veprauskas, Amy; Zhang, Aijun Persistence and stability analysis of discrete-time predator-prey models: a study of population and evolutionary dynamics. (English) Zbl 1430.92063 J. Difference Equ. Appl. 25, No. 11, 1568-1603 (2019). Reviewer: Leonid Berezanski (Beer-Sheva) MSC: 92D25 92D40 92D15 39A30 39A60 PDF BibTeX XML Cite \textit{A. S. Ackleh} et al., J. Difference Equ. Appl. 25, No. 11, 1568--1603 (2019; Zbl 1430.92063) Full Text: DOI
Yue, Qin Stability property of the prey free equilibrium point. (English) Zbl 1430.34062 Open Math. 17, 646-652 (2019). MSC: 34C60 34D23 34C05 34D20 92D25 PDF BibTeX XML Cite \textit{Q. Yue}, Open Math. 17, 646--652 (2019; Zbl 1430.34062) Full Text: DOI
Li, Wenjie; Huang, Lihong; Ji, Jinchen Periodic solution and its stability of a delayed Beddington-DeAngelis type predator-prey system with discontinuous control strategy. (English) Zbl 1427.34110 Math. Methods Appl. Sci. 42, No. 13, 4498-4515 (2019). MSC: 34K60 34A36 92D25 34K13 34K20 PDF BibTeX XML Cite \textit{W. Li} et al., Math. Methods Appl. Sci. 42, No. 13, 4498--4515 (2019; Zbl 1427.34110) Full Text: DOI
Xiao, Zaowang; Li, Zhong; Zhu, Zhenliang; Chen, Fengde Hopf bifurcation and stability in a Beddington-DeAngelis predator-prey model with stage structure for predator and time delay incorporating prey refuge. (English) Zbl 1427.34114 Open Math. 17, 141-159 (2019). MSC: 34K60 92D25 34K18 34K20 34K13 PDF BibTeX XML Cite \textit{Z. Xiao} et al., Open Math. 17, 141--159 (2019; Zbl 1427.34114) Full Text: DOI
Huang, Chengdai; Li, Huan; Li, Tongxing; Chen, Shijun Stability and bifurcation control in a fractional predator-prey model via extended delay feedback. (English) Zbl 1434.34072 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950150, 15 p. (2019). MSC: 34K60 34K37 34K20 34K18 34K35 PDF BibTeX XML Cite \textit{C. Huang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 11, Article ID 1950150, 15 p. (2019; Zbl 1434.34072) Full Text: DOI
Wang, Liancheng; Wu, Xiaqin P. Stability and Hopf bifurcation analysis for a predator-prey model with two delays. (English) Zbl 1427.34113 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 5, 345-369 (2019). MSC: 34K60 34K18 92D25 34K20 34K13 34K17 PDF BibTeX XML Cite \textit{L. Wang} and \textit{X. P. Wu}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 26, No. 5, 345--369 (2019; Zbl 1427.34113) Full Text: Link Link
Cappelletti Montano, Mirella; Lisena, Benedetta Global dynamics in periodic Holling-Tanner models with impulses. (English) Zbl 1427.34057 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 5, 329-347 (2019). MSC: 34C60 34C25 34A37 92D25 37C60 34D05 PDF BibTeX XML Cite \textit{M. Cappelletti Montano} and \textit{B. Lisena}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 26, No. 5, 329--347 (2019; Zbl 1427.34057) Full Text: Link Link
Das, Debabrata; Kar, Tapan Kumar Feedback control and its impact on generalist predator-prey system with prey harvesting. (English) Zbl 1425.91351 Nonlinear Anal., Model. Control 24, No. 5, 718-732 (2019). MSC: 91B76 92D25 93B52 PDF BibTeX XML Cite \textit{D. Das} and \textit{T. K. Kar}, Nonlinear Anal., Model. Control 24, No. 5, 718--732 (2019; Zbl 1425.91351) Full Text: DOI
Zhang, Lei; Ye, Xiaojun; Qiu, Huahai Stability of a delayed predator-prey system with stage structure for prey. (Chinese. English summary) Zbl 1438.34316 Math. Pract. Theory 49, No. 7, 248-255 (2019). MSC: 34K60 34K20 92D25 PDF BibTeX XML Cite \textit{L. Zhang} et al., Math. Pract. Theory 49, No. 7, 248--255 (2019; Zbl 1438.34316)
Yang, Bowen; Liu, Ping; Wang, Yuwen Dynamics analysis of predator-prey system with Beddington-Deangelis response and strong Allee effect. (Chinese. English summary) Zbl 1438.34171 Math. Pract. Theory 49, No. 7, 241-247 (2019). MSC: 34C60 34C23 34D20 92D25 34C05 PDF BibTeX XML Cite \textit{B. Yang} et al., Math. Pract. Theory 49, No. 7, 241--247 (2019; Zbl 1438.34171)
Lv, Xiaojun; Li, Rui; Zhou, Huajun Four positive periodic solutions of a predator-prey systems with Holling III type functional response. (Chinese. English summary) Zbl 1438.34302 Math. Pract. Theory 49, No. 3, 289-293 (2019). MSC: 34K60 34K13 92D25 47N20 PDF BibTeX XML Cite \textit{X. Lv} et al., Math. Pract. Theory 49, No. 3, 289--293 (2019; Zbl 1438.34302)
Zhu, Zhixing; Wu, Ranchao; Liu, Biao Stability and Hopf bifurcation of a Lotka-Volterra predator-prey model with Michaelis-Menten type harvesting term. (Chinese. English summary) Zbl 1438.34181 J. Northwest Norm. Univ., Nat. Sci. 55, No. 2, 25-34 (2019). MSC: 34C60 34D20 34C23 92D25 34C05 PDF BibTeX XML Cite \textit{Z. Zhu} et al., J. Northwest Norm. Univ., Nat. Sci. 55, No. 2, 25--34 (2019; Zbl 1438.34181) Full Text: DOI
Wei, Yufen; Zhu, Huan Stability and Hopf bifurcation in a predator-prey system with Holling type-III functional response and stage structure. (Chinese. English summary) Zbl 1438.34311 J. Nat. Sci. Heilongjiang Univ. 36, No. 1, 39-46 (2019). MSC: 34K60 34K20 34K18 92D25 34K21 34K13 34K17 34K19 PDF BibTeX XML Cite \textit{Y. Wei} and \textit{H. Zhu}, J. Nat. Sci. Heilongjiang Univ. 36, No. 1, 39--46 (2019; Zbl 1438.34311) Full Text: DOI
Liu, Qin; Shao, Yuanfu; Zhou, Si; Chen, Hairu Dynamical behaviors of a three species predator-prey system with predator stage-structure and impulsive effects. (English) Zbl 1438.34155 Chin. J. Eng. Math. 36, No. 2, 219-242 (2019). MSC: 34C60 34A37 34D20 34D45 92D25 34C25 34D05 PDF BibTeX XML Cite \textit{Q. Liu} et al., Chin. J. Eng. Math. 36, No. 2, 219--242 (2019; Zbl 1438.34155) Full Text: DOI
Li, Zhihong; Chai, Yuzhen Hopf bifurcation for a four-species predator-prey model with two delays and Holling type II. (Chinese. English summary) Zbl 1438.34301 J. North Univ. China, Nat. Sci. 40, No. 1, 18-25 (2019). MSC: 34K60 34K18 34K20 92D25 34K13 PDF BibTeX XML Cite \textit{Z. Li} and \textit{Y. Chai}, J. North Univ. China, Nat. Sci. 40, No. 1, 18--25 (2019; Zbl 1438.34301) Full Text: DOI
Hassan, Md. Nazmul; Asik, Lale; Kulik, Jackson; Long, K. R.; Peace, Angela Environmental seasonality on predator-prey systems under nutrient and toxicant constraints. (English) Zbl 1420.92091 J. Theor. Biol. 480, 71-80 (2019). MSC: 92D25 92D40 34C60 PDF BibTeX XML Cite \textit{Md. N. Hassan} et al., J. Theor. Biol. 480, 71--80 (2019; Zbl 1420.92091) Full Text: DOI
Liu, Hanwu; Wang, Lin; Zhang, Fengqin; Li, Qiuying; Zhou, Huakun Dynamics of a predator-prey model with state-dependent carrying capacity. (English) Zbl 1423.34052 Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4739-4753 (2019). MSC: 34C60 92D25 34C05 34D20 34C23 PDF BibTeX XML Cite \textit{H. Liu} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4739--4753 (2019; Zbl 1423.34052) Full Text: DOI
Güngör, F.; Torres, P. J. Integrability of the Basener-Ross model with time-dependent coefficients. (English) Zbl 1423.34050 S\(\vec{\text{e}}\)MA J. 76, No. 3, 485-493 (2019). MSC: 34C60 34A05 34C14 92D25 PDF BibTeX XML Cite \textit{F. Güngör} and \textit{P. J. Torres}, S\(\vec{\text{e}}\)MA J. 76, No. 3, 485--493 (2019; Zbl 1423.34050) Full Text: DOI
Meng, Xin-You; Huo, Hai-Feng; Zhang, Xiao-Bing Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey. (English) Zbl 1422.34243 J. Appl. Math. Comput. 60, No. 1-2, 1-25 (2019). MSC: 34K60 92D25 34K20 34K18 34K17 34K19 PDF BibTeX XML Cite \textit{X.-Y. Meng} et al., J. Appl. Math. Comput. 60, No. 1--2, 1--25 (2019; Zbl 1422.34243) Full Text: DOI
Louartassi, Younes; Alla, Abdellah; Hattaf, Khalid; Nabil, Aissam Dynamics of a predator-prey model with harvesting and reserve area for prey in the presence of competition and toxicity. (English) Zbl 1422.34150 J. Appl. Math. Comput. 59, No. 1-2, 305-321 (2019). MSC: 34C60 92D25 34C05 34D20 49J15 PDF BibTeX XML Cite \textit{Y. Louartassi} et al., J. Appl. Math. Comput. 59, No. 1--2, 305--321 (2019; Zbl 1422.34150) Full Text: DOI
Arancibia-Ibarra, Claudio The basins of attraction in a modified May-Holling-Tanner predator-prey model with Allee affect. (English) Zbl 1421.34032 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 185, 15-28 (2019). MSC: 34C60 92D25 34C05 34D20 34C23 34C37 34D05 PDF BibTeX XML Cite \textit{C. Arancibia-Ibarra}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 185, 15--28 (2019; Zbl 1421.34032) Full Text: DOI
Ang, Tau Keong; Safuan, Hamizah M.; Sidhu, Harvinder S.; Jovanoski, Zlatko; Towers, Isaac N. Impact of harvesting on a bioeconomic predator-prey fishery model subject to environmental toxicant. (English) Zbl 1417.92122 Bull. Math. Biol. 81, No. 7, 2748-2767 (2019). MSC: 92D25 91B76 34C23 PDF BibTeX XML Cite \textit{T. K. Ang} et al., Bull. Math. Biol. 81, No. 7, 2748--2767 (2019; Zbl 1417.92122) Full Text: DOI
Luo, Demou The study of global stability of a periodic Beddington-DeAngelis and Tanner predator-prey model. (English) Zbl 1418.34101 Result. Math. 74, No. 3, Paper No. 101, 18 p. (2019). MSC: 34C60 34D23 34C25 92D25 37C60 PDF BibTeX XML Cite \textit{D. Luo}, Result. Math. 74, No. 3, Paper No. 101, 18 p. (2019; Zbl 1418.34101) Full Text: DOI
Liu, Wei; Jiang, Yaolin Modeling and dynamics of an ecological-economic model. (English) Zbl 1416.92139 Int. J. Biomath. 12, No. 3, Article ID 1950030, 29 p. (2019). MSC: 92D25 92D40 91B76 34C23 PDF BibTeX XML Cite \textit{W. Liu} and \textit{Y. Jiang}, Int. J. Biomath. 12, No. 3, Article ID 1950030, 29 p. (2019; Zbl 1416.92139) Full Text: DOI
Wang, Cheng; Zhang, Xiang Canards, heteroclinic and homoclinic orbits for a slow-fast predator-prey model of generalized Holling type III. (English) Zbl 1418.34103 J. Differ. Equations 267, No. 6, 3397-3441 (2019). MSC: 34C60 34C37 34C26 92D25 34E15 34E17 PDF BibTeX XML Cite \textit{C. Wang} and \textit{X. Zhang}, J. Differ. Equations 267, No. 6, 3397--3441 (2019; Zbl 1418.34103) Full Text: DOI
Chinnathambi, Rajivganthi; Rihan, Fathalla A.; Alsakaji, Hebatallah J. A fractional-order predator-prey model with Beddington-DeAngelis functional response and time-delay. (English) Zbl 1415.34127 J. Anal. 27, No. 2, 525-538 (2019). MSC: 34K60 34K21 34K20 34K18 34K13 34K37 PDF BibTeX XML Cite \textit{R. Chinnathambi} et al., J. Anal. 27, No. 2, 525--538 (2019; Zbl 1415.34127) Full Text: DOI
Liu, Qun; Jiang, Daqing Stationary distribution and extinction of a stochastic one-prey two-predator model with Holling type II functional response. (English) Zbl 1415.34091 Stochastic Anal. Appl. 37, No. 3, 321-345 (2019). MSC: 34C60 60H10 92D25 34D05 34F05 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{D. Jiang}, Stochastic Anal. Appl. 37, No. 3, 321--345 (2019; Zbl 1415.34091) Full Text: DOI
Hsu, Ting-Hao Number and stability of relaxation oscillations for predator-prey systems with small death rates. (English) Zbl 1411.34064 SIAM J. Appl. Dyn. Syst. 18, No. 1, 33-67 (2019). MSC: 34C60 34C26 92D25 34E15 34D20 34C05 PDF BibTeX XML Cite \textit{T.-H. Hsu}, SIAM J. Appl. Dyn. Syst. 18, No. 1, 33--67 (2019; Zbl 1411.34064) Full Text: DOI arXiv
Hsu, Cheng-Hsiung; Lin, Jian-Jhong Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. (English) Zbl 1411.35060 Commun. Pure Appl. Anal. 18, No. 3, 1483-1508 (2019). MSC: 35C07 35K57 37C65 PDF BibTeX XML Cite \textit{C.-H. Hsu} and \textit{J.-J. Lin}, Commun. Pure Appl. Anal. 18, No. 3, 1483--1508 (2019; Zbl 1411.35060) Full Text: DOI
Martínez-Jeraldo, Nicole; Aguirre, Pablo Allee effect acting on the prey species in a Leslie-Gower predation model. (English) Zbl 1408.34039 Nonlinear Anal., Real World Appl. 45, 895-917 (2019). MSC: 34C60 34C05 92D25 34D20 34C23 34C37 PDF BibTeX XML Cite \textit{N. Martínez-Jeraldo} and \textit{P. Aguirre}, Nonlinear Anal., Real World Appl. 45, 895--917 (2019; Zbl 1408.34039) Full Text: DOI
Zheng, Wei; Sugie, Jitsuro Uniform global asymptotic stability of time-varying Lotka-Volterra predator-prey systems. (English) Zbl 1412.34164 Appl. Math. Lett. 87, 125-133 (2019). MSC: 34C60 34D23 92D25 PDF BibTeX XML Cite \textit{W. Zheng} and \textit{J. Sugie}, Appl. Math. Lett. 87, 125--133 (2019; Zbl 1412.34164) Full Text: DOI
Banasiak, J.; Tchamga, M. S. Seuneu; Szymańska-Dȩbowska, K. Canard solutions in equations with backward bifurcations of the quasi-steady state manifold. (English) Zbl 1444.34069 J. Math. Anal. Appl. 471, No. 1-2, 776-795 (2019). MSC: 34E17 34E15 34C23 34D20 37C60 92D25 PDF BibTeX XML Cite \textit{J. Banasiak} et al., J. Math. Anal. Appl. 471, No. 1--2, 776--795 (2019; Zbl 1444.34069) Full Text: DOI
Song, Jie; Hu, Mi; Bai, Yuzhen; Xia, Yonghui Dynamic analysis of a non-autonomous ratio-dependent predator-prey model with additional food. (English) Zbl 07303502 J. Appl. Anal. Comput. 8, No. 6, 1893-1909 (2018). MSC: 34C60 37C60 34C25 34C27 92D25 34D20 PDF BibTeX XML Cite \textit{J. Song} et al., J. Appl. Anal. Comput. 8, No. 6, 1893--1909 (2018; Zbl 07303502) Full Text: DOI
Peng, Miao; Zhang, Zhengdi; Wang, Xuedi; Liu, Xiuyu Hopf bifurcation analysis for a delayed predator-prey system with a prey refuge and selective harvesting. (English) Zbl 07303379 J. Appl. Anal. Comput. 8, No. 3, 982-997 (2018). MSC: 34K60 92D25 34K45 34D20 34K13 34K18 34K20 PDF BibTeX XML Cite \textit{M. Peng} et al., J. Appl. Anal. Comput. 8, No. 3, 982--997 (2018; Zbl 07303379) Full Text: DOI
Zhuo, Xianglai Global attractability and permanence for a new stage-structured delay impulsive ecosystem. (English) Zbl 07303357 J. Appl. Anal. Comput. 8, No. 2, 457-470 (2018). MSC: 34K60 34K45 92D40 34K25 34K13 PDF BibTeX XML Cite \textit{X. Zhuo}, J. Appl. Anal. Comput. 8, No. 2, 457--470 (2018; Zbl 07303357) Full Text: DOI
Meng, Xin-You; Qin, Ni-Ni; Huo, Hai-Feng Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. (English) Zbl 1448.92235 J. Biol. Dyn. 12, No. 1, 342-374 (2018). MSC: 92D25 91B76 92D30 34C23 34D23 49J15 PDF BibTeX XML Cite \textit{X.-Y. Meng} et al., J. Biol. Dyn. 12, No. 1, 342--374 (2018; Zbl 1448.92235) Full Text: DOI
Ryu, Kimun; Ko, Wonlyul; Haque, Mainul Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities. (English) Zbl 1422.92127 Nonlinear Dyn. 94, No. 3, 1639-1656 (2018). MSC: 92D25 34C60 34C23 34D23 PDF BibTeX XML Cite \textit{K. Ryu} et al., Nonlinear Dyn. 94, No. 3, 1639--1656 (2018; Zbl 1422.92127) Full Text: DOI
Liang, Guizhen; Song, Ge Permanence and stability of a two-predator-and-two competitive-prey system with Michaelis-Menten functional response. (Permanence and stability of a two-predator-and-two competitive-prey system with Machaelis-Menten functional response.) (Chinese. English summary) Zbl 1438.34151 Math. Pract. Theory 48, No. 21, 290-296 (2018). MSC: 34C60 34D23 92D25 34C25 PDF BibTeX XML Cite \textit{G. Liang} and \textit{G. Song}, Math. Pract. Theory 48, No. 21, 290--296 (2018; Zbl 1438.34151)
Zhao, Min; Zhang, Pingzheng Dynamics of a stage structured predator-prey model with cannibalism for predator. (Chinese. English summary) Zbl 1438.34320 J. Chongqing Norm. Univ., Nat. Sci. 35, No. 5, 97-101 (2018). MSC: 34K60 34K20 34K18 92D25 34K21 34K13 PDF BibTeX XML Cite \textit{M. Zhao} and \textit{P. Zhang}, J. Chongqing Norm. Univ., Nat. Sci. 35, No. 5, 97--101 (2018; Zbl 1438.34320) Full Text: DOI
Wang, Yan; Liu, Xianning A stage-structured predator-prey model with state-dependent delay. (Chinese. English summary) Zbl 1438.34310 J. Biomath. 33, No. 2, 171-178 (2018). MSC: 34K60 34K12 34K20 92D25 34K43 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{X. Liu}, J. Biomath. 33, No. 2, 171--178 (2018; Zbl 1438.34310)
Zheng, Lifei; Guo, Jie; Wu, Meihua; Wang, Xiaorui; Wan, A’ying The research on a class of the predator-prey-mutualist system with delays. (Chinese. English summary) Zbl 1438.34321 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 5, 1001-1013 (2018). MSC: 34K60 34K20 34K25 92D25 PDF BibTeX XML Cite \textit{L. Zheng} et al., Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 5, 1001--1013 (2018; Zbl 1438.34321)
Owolabi, Kolade M. Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative. (English) Zbl 1416.34009 Chaos Solitons Fractals 115, 127-134 (2018). MSC: 34A34 65L05 65L03 92D25 34C60 34A08 PDF BibTeX XML Cite \textit{K. M. Owolabi}, Chaos Solitons Fractals 115, 127--134 (2018; Zbl 1416.34009) Full Text: DOI
Li, Jing; Zhang, Zhengdi; Peng, Miao; Qu, Zifang Bifurcation analysis of a class of Filippov predator-prey system with slow variable. (Chinese. English summary) Zbl 1424.34147 Math. Pract. Theory 48, No. 17, 314-320 (2018). MSC: 34C60 34C23 92D40 92D25 34E15 PDF BibTeX XML Cite \textit{J. Li} et al., Math. Pract. Theory 48, No. 17, 314--320 (2018; Zbl 1424.34147)
Pu, Wujun; Du, Zhengguang Dynamical analysis of a fractional-order generalized predator-prey model. (Chinese. English summary) Zbl 1424.34156 J. Northwest Norm. Univ., Nat. Sci. 54, No. 5, 10-15 (2018). MSC: 34C60 34A08 34D20 92D25 34C12 37N25 PDF BibTeX XML Cite \textit{W. Pu} and \textit{Z. Du}, J. Northwest Norm. Univ., Nat. Sci. 54, No. 5, 10--15 (2018; Zbl 1424.34156) Full Text: DOI
Zhang, Nan; Wang, Jinfeng Analysis of the limit cycle properties of a fast-slow predator-prey system. (English) Zbl 1424.34176 Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 98, 11 p. (2018). MSC: 34C60 34C26 34C05 92D25 37N25 PDF BibTeX XML Cite \textit{N. Zhang} and \textit{J. Wang}, Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 98, 11 p. (2018; Zbl 1424.34176) Full Text: DOI
Skvortsova, Mariya Aleksandrovna On estimates of solutions in a predator-prey model with two delays. (Russian. English summary) Zbl 1415.34129 Sib. Èlektron. Mat. Izv. 15, 1697-1718 (2018). MSC: 34K60 34K20 92D25 34K21 34K25 PDF BibTeX XML Cite \textit{M. A. Skvortsova}, Sib. Èlektron. Mat. Izv. 15, 1697--1718 (2018; Zbl 1415.34129) Full Text: DOI
Mercado-Vásquez, Gabriel; Boyer, Denis Lotka-Volterra systems with stochastic resetting. (English) Zbl 1407.92114 J. Phys. A, Math. Theor. 51, No. 40, Article ID 405601, 16 p. (2018). MSC: 92D25 92D50 PDF BibTeX XML Cite \textit{G. Mercado-Vásquez} and \textit{D. Boyer}, J. Phys. A, Math. Theor. 51, No. 40, Article ID 405601, 16 p. (2018; Zbl 1407.92114) Full Text: DOI