×

A comparison of stable and fluctuating resources with respect to evolutionary adaptation and life-history traits using individual-based modeling and machine learning. (English) Zbl 1406.92435

Summary: There are three non-mutually-exclusive key strategies evolved by gene pools to cope with fluctuating food resource availability, including evolutionary adaptation, phenotypic plasticity, and migration. We focus primarily on evolutionary adaptation and behavioral plasticity, which is a type of phenotypic plasticity, resulting in life-history changes as ways of dealing with fluctuations in food resource availability. Using EcoSim, a predator-prey individual-based model, we compare individuals with stable food resources with those in environments where there are fluctuating food resources in terms of adaptation through behavioral plasticity and evolution. The purpose of our study is to determine whether evolution and behavioral plasticity truly play a role in adapting to an environment with fluctuating food resources, as well as to determine whether there are specific gene divergences between gene pools in fluctuating food resource environments versus gene pools where food resources are relatively stable. An important result of our study is that individuals in environments that are unstable with respect to food resource availability exhibited significant differences in behaviors versus those in environments with stable food resources. Although behavioral plasticity facilitates a rapid response to unstable food conditions, our study revealed the evolution of perceptual traits such as vision range in reaction to fluctuating food resources, indicating the importance of evolution in adapting to unstable resource environments in the long run. Moreover, using decision trees, we found that there were significant behavioral gene divergences between individuals in environments with fluctuating food resources as opposed to individuals in environments with stable food resources.

MSC:

92D15 Problems related to evolution
92D40 Ecology
68T05 Learning and adaptive systems in artificial intelligence

Software:

AS 89; C4.5
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ansmann, I. C.; Parra, G. J.; Chilvers, B. L.; Lanyon, J. M., Dolphins restructure social system after reduction of commercial fisheries, Anim. Behav., 84, 3, 575-581 (2012)
[2] Aspinall, A.; Gras, R., K-Means clustering as a speciation method within an individual-based evolving predator-prey ecosystem simulation, (Proceedings of the 6th International Conference on Active Media Technology (2010), Toronto, Canada), 318-329
[3] Atwell, J. W.; Cardoso, G. C.; Whittaker, D. J.; Campbell-Nelson, S.; Robertson, K. W.; Ketterson, E. D., Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation, Behav. Ecol., 23, 5, 960-969 (2012)
[4] Augusiak, J.; Van den Brink, P. J.; Grimm, V., Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach, Ecol. Model, 280, 117-128 (2014)
[5] Ayllón, D.; Railsback, S. F.; Vincenzi, S.; Groeneveld, J.; Almodóvarf, A.; Grimm, V., InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change, Ecol. Model, 326, 36-53 (2016)
[6] Barea, L. P.; Watson, D. M., Temporal variation in food resources determines onset of breeding in an Australian mistletoe specialist, Emu, 107, 3, 203-209 (2007)
[7] Barrett, R. D.; Hendry, A. P., Evolutionary rescue under environmental change, (Candolin, U.; Wong, B. B.M., Behavioural Responses to a Changing World: Mechanisms and Consequences (2012), Oxford University Press: Oxford University Press Oxford, UK), 216-233, Oxford University
[8] Bell, G.; Gonzalez, A., Evolutionary rescue can prevent extinction following environmental change, Ecol. Lett., 12, 9, 942-948 (2009)
[9] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 5, 1530-1535 (1992)
[10] Best, D. J.; Roberts, D. E., Algorithm AS 89: the upper tail probabilities of Spearman’s rho, J. R. Stat. Soc. Ser. C. Appl. Stat., 24, 377-379 (1975)
[11] Bhat, A.; Greulich, M. M.; Martins, E. P., Behavioral plasticity in response to environmental manipulation among zebrafish (Danio rerio) populations, PloS One, 10, 4 (2015)
[12] Botkin, D. B.; Janak, J. F.; Wallis, J. R., Some ecological consequences of a computer model of forest growth, J. Ecol., 60, 849-872 (1972)
[13] Brännström, A.; Sumpter, D. J.T., The role of competition and clustering in population dynamics, Proc. R. Soc., 272, 2065-2072 (2005)
[14] Brown, G. P.; Kelehear, C.; Shine, R., Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet-dry tropics, Funct. Ecol., 25, 6, 1339-1347 (2011)
[15] Buck, J. R.; Daniel, M. M.; Singer, A. C., Computer Explorations in Signals and Systems Using MATLAB (2002), Prentice Hall: Prentice Hall Upper Saddle River, NJ
[16] Carter, N.; Levin, S.; Barlow, A.; Grimm, V., Modeling tiger population and territory dynamics using an agent-based approach, Ecol. Model, 312, 347-362 (2015)
[17] Coulson, T.; Kendall, B. E.; Barthold, J.; Plard, F.; Schindler, S.; Ozgul, A.; Gaillard, J. M., Modeling adaptive and non-adaptive responses of populations to environmental change, Am. Nat., 190, 3, 313-336 (2017)
[18] Cowen, L. E.; Lindquist, S., Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi, Science, 309, 5744, 2185-2189 (2005)
[19] Crozier, L. G.; Hutchings, J. A., Plastic and evolutionary responses to climate change in fish, Evol. Appl., 7, 1, 68-87 (2014)
[20] DeAngelis, D. L.; Grimm, V., Individual-based models in ecology after four decades, F1000Prime Rep., 6, 39 (2014)
[21] Doran‐Sheehy, D.; Mongo, P.; Lodwick, J.; Conklin‐Brittain, N. L., Male and female western gorilla diet: preferred foods, use of fallback resources, and implications for ape versus old world monkey foraging strategies, ‎Am. J. Phys. Anthropol., 140, 4, 727-738 (2009)
[22] Dutilleul, M.; Bonzom, J. M.; Lecomte, C.; Goussen, B.; Daian, F.; Galas, S.; Réale, D., Rapid evolutionary responses of life history traits to different experimentally-induced pollutions in Caenorhabditis elegans, BMC Evol. Biol., 14, 1 (2014)
[23] Evans, M. R.; Grimm, V.; Johst, K.; Knuuttila, T.; de Langhe, R.; Lessells, C. M.; Merz, M.; O’Malley, M. A.; Orzack, S. H.; Weisberg, M.; Wilkinson, D. J.; Wolkenhauer, O.; Benton, T. G., Do simple models lead to generality in Ecology, Trends Ecol. Evol., 28, 578-583 (2013)
[24] Fawcett, T. W.; Fallenstein, B.; Higginson, A. D.; Houston, A. I.; Mallpress, D. E.W.; Trimmer, P. C.; McNamara, J. M., The evolution of decision rules in complex environments, Trends Cogn. Sc., 18, 153-161 (2014)
[25] Gerasimov, Y. V., Fish foraging behavior at different stability levels of food distribution, Inland Water Biol., 1, 2, 175-181 (2008)
[26] Ghalambor, C. K.; McKay, J. K.; Carroll, S. P.; Reznick, D. N., Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments, Funct. Ecol., 21, 3, 394-407 (2007)
[27] Gianoli, E.; González-Teuber, M., Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae), Evol. Ecol., 19, 6, 603-613 (2005)
[28] Gienapp, P.; Teplitsky, C.; Alho, J. S.; Mills, J. A.; Merilä, J., Climate change and evolution: disentangling environmental and genetic responses, Mol. Ecol., 17, 1, 167-178 (2008)
[29] Gillings, S.; Newson, S. E.; Noble, D. G.; Vickery, J. A., Winter availability of cereal stubbles attracts declining farmland birds and positively influences breeding population trends, Proc. R. Soc., 272, 1564, 733-739 (2005)
[30] Giske, J.; Eliassen, S.; Ø., Fiksen; Jakobsen, P. J.; Aksnes, D. L.; Mangel, M.; Jørgensen, C., The emotion system promotes diversity and evolvability, Proc. R. Soc. (2014)
[31] Golestani, A.; Gras, R., Regularity analysis of an individual-based ecosystem simulation, Chaos, 20, 4 (2010)
[32] Golestani, A.; Gras, R.; Cristescu, M., Speciation with gene flow in a heterogeneous virtual world: can physical obstacles accelerate speciation?, Proc. R. Soc., 279, 3055-3064 (2012)
[33] Grant, P. R.; Grant, B. R., Evolution of character displacement in Darwin’s finches, Science, 313, 5784, 224-226 (2006)
[34] Gras, R.; Devaurs, D.; Wozniak, A.; Aspinall, A., An individual-based evolving predator-prey ecosystem simulation using a Fuzzy Cognitive Map model of behavior, Artif. Lif., 15, 423-463 (2009)
[35] Gras, R.; Golestani, A.; Hendry, A. P.; Cristescu, M. E., Speciation without Pre-Defined fitness functions, PLoS On, 10,, 1-21 (2015)
[36] Grimm, V.; Railsback, S. F., Individual-based Modelling and Ecology (2005), Princeton University Press: Princeton University Press Princeton, New Jersey · Zbl 1085.92043
[37] Grimm, V., Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future, Ecol. Model, 115, 129-148 (1999)
[38] Hallsson, L. R.; Björklund, M., Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity, J. Evol. Biol., 25, 7, 1275-1290 (2012)
[39] Hendry, A. P., Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics, J. Hered., 107, 25-41 (2016)
[40] Hoffmann, A. A.; Sgrò, C. M., Climate change and evolutionary adaptation, Nature, 470, 7335, 479-485 (2016)
[41] Hoffmann, C. M.; O’Quin, K. E.; Smith, A. R.; Carleton, K. L., Plasticity of opsin gene expression in cichlids from Lake Malawi, Mol. Ecol., 19, 10, 2064-2074 (2010)
[42] Huang, Y.; Stinchcombe, J. R.; Agrawal, A. F., Quantitative genetic variance in experimental fly populations evolving with or without environmental heterogeneity, Evolution, 69, 10, 2735-2746 (2015)
[43] Johansson, J., Evolutionary responses to environmental changes: How does competition affect adaptation, Evolution, 62, 2, 421-435 (2008)
[44] Kosko, B., Fuzzy cognitive maps, Int. J. Man. Mach. Stud., 24, 65-75 (1986) · Zbl 0593.68073
[45] Lande, R., Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation, J. Evol. Biol., 22, 7, 1435-1446 (2009)
[46] Lee, J. S.F; Berejikian, B. A., Effects of the rearing environment on average behaviour and behavioural variation in steelhead, J. Fish. Biol, 72, 7, 1736-1749 (2008)
[47] Lind, M. I.; Johansson, F., The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria, J. Evol. Biol., 20, 4, 1288-1297 (2007)
[48] Macias-Muñoz, A.; Smith, G.; Monteiro, A.; Briscoe, A. D., Transcriptome-wide differential gene expression in Bicyclus anynana butterflies: female vision-related genes are more plastic, Mol. Biol. Evol., 33, 1, 79-92 (2016)
[49] MacPherson, B.; Gras, R., Individual-based ecological models: adjunctive tools or experimental systems, Ecol. Model, 323, 106-114 (2016)
[50] Mashayekhi, M.; Hosseini Sedehi, M.; Gras, R., Can we predict speciation and species extinction using an individual-based ecosystem simulation?, (Proceedings of ICAI’13 - International Conference on Artificial Intelligence (2013), Las Vegas, Nevada), 301-307
[51] Merilä, J.; Hoffmann, A. A., Evolutionary Impacts of Climate Change (2016), Oxford Research Encyclopedias, Published online August
[52] Merilä, J., Evolution in response to climate change: in pursuit of the missing evidence, BioEssays, 34, 9, 811-818 (2012)
[53] Moczek, A. P.; Sultan, S.; Foster, S.; Ledón-Rettig, C.; Dworkin, I.; Nijhout, H. F.; Abouheif, E.; Pfennig, D. W., The role of developmental plasticity in evolutionary innovation, Proc. Bio. Sci., 278, 2705-2713 (2011)
[54] Moore, J. W.; Yeakel, J. D.; Peard, D.; Lough, J.; Beere, M., Life‐history diversity and its importance to population stability and persistence of a migratory fish: Steelhead in two large North American watersheds, J. Anim. Ecol., 83, 5, 1035-1046 (2014)
[55] Ofria, C.; Wilke, C. O., Avida: a software platform for research in computational evolutionary biology, Artif. Lif., 10, 191-229 (2004)
[56] Ozgul, A.; Childs, D. Z.; Oli, M. K.; Armitage, K. B.; Blumstein, D. T.; Olson, L. E.; Tuljapurkar, S.; Coulson, T., Coupled dynamics of body mass and population growth in response to environmental change, Nature, 466, 7305, 482-485 (2010)
[57] Queitsch, C.; Sangster, T. A.; Lindquist, S., Hsp90 as a capacitor of phenotypic variation, Nature, 417, 618-624 (2002)
[58] Quinlan, J. R., C4.5: Programs for Machine Learning, 17-26 (1993), Morgan Kaufmann Publishers: Morgan Kaufmann Publishers San Francisco, CA
[59] Randall, J. A.; Rogovin, K.; Parker, P. G.; Eimes, J. A., Flexible social structure of a desert rodent, Rhombomys opimus: Philopatry, kinship, and ecological constraints, Behav. Ecol., 16, 6, 961-973 (2005)
[60] Richter, H. V.; Cumming, G. S., Food availability and annual migration of the straw‐colored fruit bat (Eidolon helvum), J. Zool., 268, 1, 35-44 (2006)
[61] Rotheray, E. L.; Goulson, D.; Bussiere, L. F., Growth, development, and life‐history strategies in an unpredictable environment: Case study of a rare hoverfly Blera fallax (Diptera, Syrphidae), Ecol. Entomol., 41, 1, 85-95 (2016)
[62] Rutherford, S. L.; Lindquist, S., Hsp90 as a capacitor for morphological evolution, Nature, 396, 336-342 (1998)
[63] Scott, R.; Karim Pour, M.; Gras, R., Ecological effects of cyclically fluctuating resources, (Proceedings of the Summer Computer Simulation Conference. Proceedings of the Summer Computer Simulation Conference, Montreal, Quebec, Canada (2016), Society for Computer Simulation International), 50, Jul 24
[64] Sherley, R. B.; Underhill, L. G.; Barham, B. J.; Barham, P. J.; Coetzee, J. C.; Crawford, R. J.; Dyer, B. M.; Leshoro, T. M.; Upfold, L., Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus, Mar. Ecol. Prog. Ser., 473, 291-301 (2013)
[65] Sisodia, S.; Singh, B. N., Variations in morphological and life-history traits under extreme temperatures in Drosophila ananassae, J. Biosci., 34, 2, 263-274 (2009)
[66] Snell-Rood, E. C., An overview of the evolutionary causes and consequences of behavioral plasticity, Anim. Behav., 85, 1004-1011 (2013)
[67] Stenseth, N. C.; Mysterud, A.; Ottersen, G.; Hurrell, J. W.; Chan, K. S.; Lima, M., Ecological effects of climate fluctuations, Science, 297, 5585, 1292-1296 (2002)
[68] Stone, A. I., Responses of squirrel monkeys to seasonal changes in food availability in an eastern Amazonian forest, Am. J. Primatol., 69, 2, 142-157 (2007)
[69] Suzuki, Y.; Nijhout, H. F., Evolution of a polyphenism by genetic accommodation, Science, 311, 5761, 650-652 (2006)
[70] Thearling, K.; Ray, T., Evolving multi-cellular artificial life, (Proceedings of Artificial Life I (1994), MIT: MIT Cambridge, Massachusetts), 283-288
[71] Torres-Dowdall, J.; Handelsman, C. A.; Reznick, D. N.; Ghalambor, C. K., Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata), Evolution, 66, 11, 3432-3443 (2012)
[72] Uller, T., Developmental plasticity and the evolution of parental effects, Trends Ecol. Evol., 8, 432-438 (2008)
[73] Wiens, K. E.; Crispo, E.; Chapman, L. J., Phenotypic plasticity is maintained despite geographical isolation in an African cichlid fish, Pseudocrenilabrus multicolor, Int. Zool., 9, 1, 85-96 (2014)
[74] Yaeger, L., Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision, and Behavior or PolyWorld: Life in a New Context. Artificial Life III, 263-298 (1992), Santa Fe Institute Studies in the Sciences of Complexity: Santa Fe Institute Studies in the Sciences of Complexity Redwood City, CA
[75] Zhu, L.; Qualls, W. A.; Marshall, J. M.; Arheart, K. L.; DeAngelis, D. L.; McManus, J. W.; Traore, S. F.; Doumbia, S.; Schlein, Y.; Müller, C.; Beier, J. C., A spatial individual-based model predicting a great impact of copious sugar sources and resting sites on survival of Anopheles gambiae and malaria parasite transmission, Malar. J., 14, 59 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.