zbMATH — the first resource for mathematics

Noise suppression in inverse weak value-based phase detection. (English) Zbl 1423.81026
Summary: We examine the effect of different sources of technical noise on inverse weak value-based precision phase measurements. We find that this type of measurement is similarly robust to technical noise as related experiments in the weak value regime. In particular, the measurements considered here are robust to additive Gaussian white noise and angular jitter noise commonly encountered in optical experiments. Additionally, we show the same techniques used for precision phase measurement can be used with the same technical advantages for optical frequency measurements.
Reviewer: Reviewer (Berlin)
81P15 Quantum measurement theory, state operations, state preparations
94A13 Detection theory in information and communication theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
81V80 Quantum optics
60H40 White noise theory
Full Text: DOI
[1] Aharonov, Y.; Albert, DZ; Vaidman, L., How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. Am. Phys. Soc., 60, 1351, (1988)
[2] Hosten, O.; Kwiat, P., Observation of the spin hall effect of light via weak measurements, Science, 319, 787, (2008)
[3] Dixon, PB; Starling, DJ; Jordan, AN; Howell, JC, Ultrasensitive beam deflection measurement via interferometric weak value amplification, Phys. Rev. Lett., 102, 173601, (2009)
[4] Starling, DJ; Dixon, PB; Jordan, AN; Howell, JC, Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values, Phys. Rev. A, 80, 041803, (2009)
[5] Starling, DJ; Dixon, PB; Jordan, AN; Howell, JC, Precision frequency measurements with interferometric weak values, Phys. Rev. A, 82, 063822, (2010)
[6] Starling, DJ; Dixon, PB; Williams, NS; Jordan, AN; Howell, JC, Continuous phase amplification with a Sagnac interferometer, Phys. Rev. A, 82, 011802(r), (2010)
[7] Howell, JC; Starling, DJ; Dixon, PB; Vudyasetu, PK; Jordan, AN, Interferometric weak value deflections: quantum and classical treatments, Phys. Rev. A, 81, 033813, (2010)
[8] Hogan, JM; Hammer, J.; Chiow, S-W; Dickerson, S.; Johnson, DMS; Kovachy, T.; Sugarbaker, A.; Kasevich, MA, Precision angle sensor using an optical lever inside a Sagnac interferometer, Opt. Lett., 36, 1698, (2011)
[9] Pfeifer, M.; Fischer, P., Instrumentation, measurement, and metrology; Refraction; Birefringence; Chiral media, Opt. Express, 19, 16508, (2011)
[10] Egan, P.; Stone, JA, Weak-value thermostat with 0.2 mK precision, Opt. Lett., 37, 4991, (2012)
[11] Gorodetski, Y.; Bliokh, KY; Stein, B.; Genet, C.; Shitrit, N.; Kleiner, V.; Hasman, E.; Ebbesen, TW, Weak measurements of light chirality with a plasmonic slit, experimental observation of the spin hall effect of light on a nanometal film via weak measurements, Phys. Rev. Lett, 109, 013901, (2012)
[12] Zhou, X.; Xiao, Z.; Luo, H.; Wendoi, S., Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements, Phys. Rev. A, 85, 043809, (2012)
[13] Strübi, G.; Bruder, C., Measuring ultrasmall time delays of light by joint weak measurements, Phys. Rev. Lett., 110, 083605, (2013)
[14] Viza, GI; Martínez-Rincón, J.; Howland, GA; Frostig, H.; Shomroni, I.; Dayan, B.; Howell, JC, Weak-values technique for velocity measurements, Opt. Lett., 38, 2949, (2013)
[15] Xu, X-Y; Kedem, Y.; Sun, K.; Vaidman, L.; Li, C-F; Guo, G-C, Phase estimation with weak measurement using a white light source, Phys. Rev. Lett., 111, 033604, (2013)
[16] Zhou, L.; Turek, Y.; Sun, CP; Nori, F., Weak-value amplification of light deflection by a dark atomic ensemble, Phys. Rev. A, 88, 053815, (2013)
[17] Magaña Loaiza, OS; Mirhosseini, M.; Rodenburg, B.; Boyd, RW, Amplification of angular rotations using weak measurements, Phys. Rev. Lett., 112, 200401, (2014)
[18] Salazar-Serrano, LJ; Janner, D.; Brunner, N.; Pruneri, V.; Torres, JP, Measurement of sub-pulse-width temporal delays via spectral interference induced by weak value amplification, Phys. Rev. A, 89, 012126, (2014)
[19] Salazar-Serrano, L.; Barrera, D.; Amaya, W.; Sales, S.; Pruneri, V.; Capmany, J.; Torres, J., Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification, Opt. Lett., 40, 3962, (2015)
[20] Martínez-Rincón, J.; Mullarkey, CA; Viza, GI; Liu, W-T; Howell, JC, Ultrasensitive inverse weak-value tilt meter, Opt. Lett., 42, 2479, (2017)
[21] Dressel, J.; Malik, M.; Miatto, FM; Jordan, AN; Boyd, RW, Colloquium: understanding quantum weak values: basics and applications, Rev. Mod. Phys., 86, 307, (2014)
[22] Pang, S.; Dressel, J.; Brun, TA, Entanglement-assisted weak value amplification, Phys. Rev. Lett., 113, 030401, (2014)
[23] Pang, S.; Brun, TA, Improving the precision of weak measurements by postselection measurement, Phys. Rev. Lett., 115, 120401, (2015)
[24] Jordan, AN; Martínez-Rincón, J.; Howell, JC, Technical advantages for weak-value amplification: when less is more, Phys. Rev. X, 4, 011031, (2014)
[25] Knee, GC; Gauger, EM, When amplification with weak values fails to suppress technical noise, Phys. Rev. X, 4, 011032, (2014)
[26] Viza, GI; Martínez-Rincón, J.; Alves, GB; Jordan, AN; Howell, JC, Experimentally quantifying the advantages of weak-value-based metrology, Phys. Rev. A, 92, 032127, (2015)
[27] Alves, GB; Escher, BM; Matos Filho, RL; Zagury, N.; Davidovich, L., Weak-value amplification as an optimal metrological protocol, Phys. Rev. A, 91, 062107, (2015)
[28] Torres, JP; Salazar-Serrano, LJ, Weak value amplification: a view from quantum estimation theory that highlights what it is and what isn’t, Sci. Rep., 6, 19702, (2016)
[29] Harris, J., Boyd, R.W., Lundeen, J.S.: Weak value amplification can outperform conventional measurement in the presence of detector saturation (2016). arXiv preprint. arXiv:1612.04327
[30] Pang, S.; Alonso, JRG; Brun, TA; Jordan, AN, Protecting weak measurements against systematic errors, Phys. Rev. A, 94, 012329, (2016)
[31] Dressel, J.; Lyons, K.; Jordan, AN; Graham, TM; Kwiat, PG, Strengthening weak-value amplification with recycled photons, Phys. Rev. A, 88, 023821, (2013)
[32] Lyons, K.; Dressel, J.; Jordan, AN; Howell, JC; Kwiat, PG, Power-recycled weak-value-based metrology, Phys. Rev. Lett., 114, 170801, (2015)
[33] Byard, C., Graham, T., Jordan, A., Kwiat, P.G.: Pulse recycling and weak value metrology. In: Frontiers in Optics 2015. Optical Society of America, Paper JW2A-69 (2015)
[34] Wang, Y-T; Tang, J-S; Hu, G.; Wang, J.; Yu, S.; Zhou, Z-Q; Cheng, Z-D; Xu, J-S; Fang, S-Z; Wu, Q-L; etal., Experimental demonstration of higher precision weak-value-based metrology using power recycling, Phys. Rev. Lett., 117, 230801, (2016)
[35] Dressel, J.; Lyons, K.; Jordan, AN; Graham, T.; Kwiat, P., Strengthening weak values with recycled photons, Phys. Rev. A, 88, 023821, (2013)
[36] Lyons, K.; Dressel, J.; Jordan, AN; Howell, JC; Kwiat, PG, Power-recycled weak-value-based metrology, Phys. Rev. Lett., 114, 170801, (2015)
[37] Kofman, AG; Ashhab, S.; Nori, F., Nonperturbative theory of weak pre- and post-selected measurements, Phys. Rep., 520, 43, (2012)
[38] Starling, DJ; Bloch, SM; Vudyasetu, PK; Choi, JS; Little, B.; Howell, JC, Double Lorentzian atomic prism, Phys. Rev. A, 86, 023826, (2012)
[39] Boyd, R.W., Gauthier, D.J.: Slow and Fast Light. University of Rochester Institute of Optics, Technical Report (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.