×

Split Bregman iteration for multi-period mean variance portfolio optimization. (English) Zbl 1508.91499

Summary: This paper investigates the problem of defining an optimal long-term investment strategy, where the investor can exit the investment before maturity without severe loss. Our setting is a multi-period one, where the aim is to make a plan for allocating all of wealth among the \(n\) assets within a time horizon of \(m\) periods. In addition, the investor can rebalance the portfolio at the beginning of each period. We develop a model in Markowitz context, based on a fused lasso approach. According to it, both wealth and its variation across periods are penalized using the \(l_1\) norm, so to produce sparse portfolios, with limited number of transactions. The model leads to a non-smooth constrained optimization problem, where the inequality constraints are aimed to guarantee at least a minimum level of expected wealth at each date. We solve it by using split Bregman method, that has proved to be efficient in the solution of this type of problems. Due to the additive structure of the objective function, the alternating split Bregman at each iteration yields to easier subproblems to be solved, which either admit closed form solutions or can be solved very quickly. Numerical results on data sets generated using real-world price values show the effectiveness of the proposed model.

MSC:

91G10 Portfolio theory
90C30 Nonlinear programming
65K10 Numerical optimization and variational techniques

Software:

CSparse
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K., Sparsity and mmoothness via the fused lasso, J. Royal Stat. Soc. Series B (Stat. Methodol.), 67, 1, 91-108 (2005) · Zbl 1060.62049
[2] Goldstein, T.; Osher, S., The split Bregman for l1-regularization problems, SIAM J. Imag. Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
[3] Yu, D.; Lee, S.; Lee, W.; Kim, S.; Lim, J.; Know, S., Classification of spectral data using fused lasso logistic regression, Chemom. Intell. Lab. Syst., 142, 15, 70-77 (2015)
[4] Corsaro, S.; De Simone, V.; Marino, Z., Fused lasso approach in portfolio selection, Ann. Oper. Res. (2019)
[5] Antonelli, L.; De Simone, V., Comparison of minimization methods for nonsmooth image segmentation, Commun. Appl. Ind. Math., 9, 68-96 (2018) · Zbl 1391.94056
[6] di Serafino, D.; Landi, G.; Viola, M., ACQUIRE: An inexact iteratively reweighted norm approach for TV-based Poisson image restoration, Appl. Math. Comput., 364, 124678 (2020) · Zbl 1433.65113
[7] De Asmundis, R.; di Serafino, D.; Hager, W.; Toraldo, G.; Zhang, H., An efficient gradient method using the yuan steplength, Comput. Optim. Appl., 59, 3, 541-563 (2014) · Zbl 1310.90082
[8] Antonelli, L.; De Simone, V.; di Serafino, D., On the application of the spectral projected gradient method in image segmentation, J. Math. Imag. Vis., 54, 106-116 (2016) · Zbl 1353.68284
[9] di Serafino, D.; Ruggiero, V.; Toraldo, G.; Zanni, L., On the steplength selection in gradient methods for unconstrained optimization, Appl. Math. Comput., 318, 176-195 (2018) · Zbl 1426.65082
[10] Beck, A.; Teboulle, M., Gradient-based algorithms with applications to signal recovery, Convex Optim. Signal Process. Commun., 42-88 (2009) · Zbl 1211.90290
[11] O’Donoghue, B.; Stathopoulos, G.; Boyd, S., A splitting method for optimal control, IEEE Trans. Control Sys. Technol., 21, 6, 2432-2442 (2013)
[12] Parikh, N.; Boyd, S., Proximal algorithms, Found. Trends Optim., 1, 3, 127-239 (2014)
[13] Rui, E.; Boyd, S., A primer on monotone operator methods, Appl. Comput. Math., 15, 1, 3-43 (2016) · Zbl 1342.47066
[14] Setzer, S., Operator splittings, bregman methods and frame shrinkage in image processing, Int. J. Computer Vis., 9, 265-280 (2011) · Zbl 1235.68314
[15] De Simone, V.; di Serafino, D.; Viola, M., A subspace-accelerated split Bregman method for sparse data recovery with joint ℓ_1-type regularizers, Electron. Trans. Numer. Anal., 53, 406-425 (2020) · Zbl 1451.65074
[16] Goldstein, T.; Bresson, X.; Osher, S., Geometric applications of the split Bregman method: segmentation and surface reconstruction, J. Sci. Comput., 45, 1-3, 272-293 (2010) · Zbl 1203.65044
[17] Ye, G.; Xie, X., Split Bregman method for large scale fused lasso, Comput. Stat. Data Anal., 55, 1552-1569 (2011) · Zbl 1328.65048
[18] Cesarone, F.; Scozzari, A.; Tardella, F., Linear vs. quadratic portfolio selection models with hard real-world constraints, Comput. Manag. Sci., 12, 345-370 (2015) · Zbl 1355.91076
[19] Cesarone, F.; Moretti, J.; Tardella, F., Optimally chosen small portfolios are better than large ones, Econ. Bull., 36, 4, 1876-1891 (2016)
[20] Brodie, J.; Daubechies, I.; De Mol, C.; Giannone, D.; Loris, I., Sparse and stable Markowitz portfolios, PNAS, 30, 106, 12267-12272 (2009) · Zbl 1203.91271
[21] Corsaro, S.; De Simone, V.; Marino, Z.; Perla, F., L_1-regularization for multi-period portfolio selection, Ann. Oper. Res. (2019)
[22] Corsaro, S.; De Simone, V., Adaptive l_1-regularization for short-selling control in portfolio selection, Comput. Optim. Appl., 72, 2, 457-478 (2019) · Zbl 1422.91646
[23] Bruni, R.; Cesarone, F.; Scozzari, A.; Tardella, F., On exact and approximate stochastic dominance strategies for portfolio selection, Eur. J. Oper. Res., 259, 1, 322-329 (2017) · Zbl 1395.91396
[24] Guastaroba, G.; Mansini, R.; Ogryczak, W.; Speranza, M., Linear programming models based on omega ratio for the enhanced index tracking problem, Eur. J. Oper. Res., 251, 3, 938-956 (2016) · Zbl 1346.91208
[25] Yin, W.; Osher, S.; Goldfarb, D.; Darbon, J., Bregman iterative algorithms for l1-minimization with applications to compressed sensing, SIAM J. Imag. Sci., 1, 1, 143-168 (2008) · Zbl 1203.90153
[26] Davis, T. A., Direct Methods for Sparse Linear Systems (2006), Society for Industrial and Applied Mathematics · Zbl 1119.65021
[27] Davis, T. A.; Rajamanickam, S.; Sid-Lakhdar, W. M., A survey of direct methods for sparse linear systems, Acta Numer., 25, 383-566 (2016) · Zbl 1346.65011
[28] Bruni, R.; Cesarone, F.; Scozzari, A.; Tardella, F., Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models, Data Brief, 8, 858-862 (2016)
[29] Ledoit, O.; Wolf, M., A well-conditioned estimator for large-dimensional covariance matrices, J. Multivar. Anal., 88, 2, 365-411 (2004) · Zbl 1032.62050
[30] DeMiguel, V.; Garlappi, L.; Uppal, R., Optimal versus naive diversification: how inefficient is the 1-n portfolio strategy?, Rev. Financ. Stud., 22, 5, 1915-1953 (2009)
[31] Sharpe, W. F., The sharpe ratio, J. Portf. Manag., 21, 1, 49-58 (1994)
[32] Goodwin, T. H., The information ratio, Financ. Anal. J., 54, 4, 34-43 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.