×

Using the Ornstein-Uhlenbeck process to model the evolution of interacting populations. (English) Zbl 1382.92199

Summary: The Ornstein-Uhlenbeck (OU) process plays a major role in the analysis of the evolution of phenotypic traits along phylogenies. The standard OU process includes random perturbations and stabilizing selection and assumes that species evolve independently. However, evolving species may interact through various ecological process and also exchange genes especially in plants. This is particularly true if we want to study phenotypic evolution among diverging populations within species. In this work we present a straightforward statistical approach with analytical solutions that allows for the inclusion of adaptation and migration in a common phylogenetic framework, which can also be useful for studying local adaptation among populations within the same species. We furthermore present a detailed simulation study that clearly indicates the adverse effects of ignoring migration. Similarity between species due to migration could be misinterpreted as very strong convergent evolution without proper correction for these additional dependencies. Finally, we show that our model can be interpreted in terms of ecological interactions between species, providing a general framework for the evolution of traits between “interacting” species or populations.

MSC:

92D15 Problems related to evolution
92D10 Genetics and epigenetics
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
62P10 Applications of statistics to biology and medical sciences; meta analysis
92-08 Computational methods for problems pertaining to biology
92B10 Taxonomy, cladistics, statistics in mathematical biology

Software:

R; PAUP*
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abbott, R.; Albach, D.; Ansell, S.; Arntzen, J. W.; Baird, S. J.; Bierne, N.; Boughman, J.; Brelsford, A.; Buerkle, C. A.; Buggs, R.; Butlin, R. K.; Dieckmann, U.; Eroukhmanoff, F.; Grill, A.; Cahan, S. H.; Hermansen, J. S.; Hewitt, G.; Hudson, A. G.; Jiggins, C.; Jones, J.; Keller, B.; Marczewski, T.; Mallet, J.; Martinez-Rodriguez, P.; Möst, M.; Mullen, S.; Nichols, R.; Nolte, A. W.; Parisod, C.; Pfennig, K.; Rice, A. M.; Ritchie, M. G.; Seifert, B.; Smadja, C. M.; Stelkens, R.; Szymura, J. M.; Väinölä, R.; Wolf, J. B.W.; Zinner, D., Hybridization and speciation, J. Evol. Biol., 26, 229-246 (2013)
[2] Ané, C.; Ho, L. S.T.; Roch, S., Phase transition on the convergence rate of parameter estimation under an Ornstein-Uhlenbeck diffusion on a tree, J. Math. Biol., 74, 355-385 (2016) · Zbl 1358.62069
[3] Bartoszek, K.; Pienaar, J.; Mostad, P.; Andersson, S.; Hansen, T. F., A phylogenetic comparative method for studying multivariate adaptation, J. Theor. Biol., 314, 204-215 (2012) · Zbl 1397.92481
[4] Bartoszek, K.; Sagitov, S., Phylogenetic confidence intervals for the optimal trait value, J. Appl. Probab., 52, 4 (2015) · Zbl 1332.62278
[5] Beaulieu, J. M.; Jhwueng, D.-C.; Boettiger, C.; O’Meara, B. C., Modeling stabilizing selection: Expanding the Ornstein-Uhlenbeck model of adaptive evolution, Evolution, 66, 2369-2389 (2012)
[6] Butler, M. A.; King, A. A., Phylogenetic comparative analysis: a modelling approach for adaptive evolution, Am. Nat., 164, 6, 683-695 (2004)
[7] Cooper, N.; Thomas, G. H.; Venditti, C.; Meade, A.; Freckleton, R. P., A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies, Biol. J. Linn. Soc., 118, 1, SI, 64-77 (2016)
[8] Cressler, C. E.; Butler, M. A.; King, A. A., Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein-Uhlenbeck model, Syst. Biol., 64, 6, 953-968 (2015)
[9] Drury, J.; Clavel, J.; Manceau, M.; Morlon, H., Estimating the effects of competition on trait evolution using maximum likelihood inference, Syst. Biol., 65, 4, 700-710 (2016)
[10] Edwards, A. W.F., Estimation of the branch points of a branching diffusion process, J. R. Stat. Society. Series B, 32, 2, 155-174 (1970) · Zbl 0203.50801
[11] Evans, L. C., An Introduction to Stochastic Differential Equations (2013), American Mathematical Society · Zbl 1416.60002
[12] Felsenstein, J., Phylogenies and the comparative method, Am. Nat., 125, 1, 1-15 (1985)
[13] Felsenstein, J., Phylogenies and quantitative characters, Annu. Rev. Ecol. Syst., 19, 445-471 (1988)
[14] Fitch, M. W., Defining the course of evolution: minimum change for a specific tree topology, Syst. Zool., 20, 406-416 (1971)
[15] FitzJohn, R. G., Quantitative traits and diversification, Syst. Biol., 59, 6, 619-633 (2010)
[16] (Garamszegi, L. Z., Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (2014), Springer-Verlag: Springer-Verlag Berlin Heidelberg)
[17] Hansen, T. F., Stabilizing selection and the comparative analysis of adaptation, Evolution, 51, 5, 1341-1351 (1997)
[18] Hansen, T. F.; Bartoszek, K., Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies, Syst. Biol., 61, 3, 413-425 (2012)
[19] Hansen, T. F.; Pienaar, J.; Orzack, S. H., A comparative method for studying adaptation to a randomly evolving environment, Evolution, 62, 1965-1977 (2008)
[20] Held, T.; Nourmohammad, A.; Lässig, M., Adaptive evolution of molecular phenotypes, J. Stat. Mech., 2014, 9, P09029 (2014) · Zbl 1456.92086
[21] Hendry, A. P.; Day, T.; Taylor, E. B., Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests, Evolution, 55, 459-466 (2001)
[22] Ingram, T.; Mahler, D. L., SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion, Methods Ecol. Evol., 4, 5, 416-425 (2013)
[23] Ives, A. R.; Midford, P. E.; GarlandT., Jr., Within-species variation and measurement error in phylogenetic comparative methods, Syst. Biol., 56, 2, 252-270 (2007)
[24] Jhwueng, D.-C., O’Meara, B. C., 2015. Trait evolution on phylogenetic networks. bioRxiv e-prints: http://dx.doi.org/10.1101/023986; Jhwueng, D.-C., O’Meara, B. C., 2015. Trait evolution on phylogenetic networks. bioRxiv e-prints: http://dx.doi.org/10.1101/023986
[25] Khabbazian, M.; Kriebel, R.; Rohe, K.; Ané, C., Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models, Meth. Ecol. Evol, 7, 811-824 (2016)
[26] Mallet, J.; Joron, M., Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation, Annu Rev Ecol Syst, 30, 201-233 (1999)
[27] Manceau, M.; Lambert, A.; Morlon, H., A unifying comparative phylogenetic framework including traits coevolving across interacting lineages, Syst. Biol. (2016)
[28] Martins, E. P.; Lamont, J., Estimating ancestral states of a communicative display: a comparative study of Cyclura rock iguanas, Anim Behav, 55, 1685-1706 (1998)
[29] Minoarivelo, H. O.; Hui, C.; Terblanche, J. S.; Kosakovsky Pond, S. L.; Scheffler, K., Detecting phylogenetic signal in mutualistic interaction networks using a Markov process model, Oikos, 123, 10, 1250-1260 (2014)
[30] Moen, D. S.; Morlon, H.; Wiens, J. J., Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs, Syst. Biol., 65, 1, 146-160 (2016)
[31] Nourmohammad, A., Rambeu, J., Held, T., Berg, J., Lassig, M., 2015. Pervasive adaptation of gene expression in Drosophila. bioRxiv preprint.; Nourmohammad, A., Rambeu, J., Held, T., Berg, J., Lassig, M., 2015. Pervasive adaptation of gene expression in Drosophila. bioRxiv preprint.
[32] Nuismer, S. L.; Harmon, L. J., Predicting rates of interspecific interaction from phylogenetic trees, Ecol. Lett., 18, 17-27 (2015)
[33] Poisot, T., Stouffer, D. B., 2016. Interactions retain the co-phylogenetic matching that communities lost. bioRxiv preprint.; Poisot, T., Stouffer, D. B., 2016. Interactions retain the co-phylogenetic matching that communities lost. bioRxiv preprint.
[34] R Core Team, R: A Language and Environment for Statistical Computing (2013), R Foundation for Statistical Computing: R Foundation for Statistical Computing Vienna, Austria
[35] Rohlfs, R. V.; Harrigan, P.; Nielsen, R., Modeling gene expression evolution with an extended Ornstein-Uhlenbeck process accounting for within-species variation, Mol. Biol. Evol., 31, 1, 201-211 (2014)
[36] Rohlfs, R. V.; Nielsen, R., Phylogenetic ANOVA: the expression variance and evolution model for quantitative trait evolution, Syst. Biol., 64, 5, 695-708 (2015)
[37] Savolainen, O.; Lascoux, M.; Merilä, J., Ecological genomics of local adaptation, Nat. Rev. Genet., 14, 11, 807-820 (2013)
[38] Silvestro, D.; Kostikova, A.; Litsios, G.; Pearman, P. B.; Salamin, N., Measurement errors should always be incorporated in phylogenetic comparative analysis, Methods Ecol. Evol., 6, 340-346 (2015)
[39] Solís-Lemus, C.; Yang, M.; Ané, C., Inconsistency of species tree methods under gene flow, Syst. Biol., 65, 843-851 (2016)
[40] Stadler, T., On incomplete sampling under birth-death models and connections to the sampling-based coalescent, J. Theor. Biol., 261, 1, 58-68 (2009) · Zbl 1403.92267
[41] Stadler, T., Simulating trees with a fixed number of extant species, Syst. Biol., 60, 5, 676-684 (2011)
[42] Stone, G. N.; Nee, S.; Felsenstein, J., Controlling for non-independence in comparative analysis of patterns across populations within species, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 366, 1410-1424 (2011)
[43] Swofford, D. L.; Maddison, W. P., Reconstructing ancestral character states under wagner parsimony, Math. Biosci., 87, 199-229 (1987) · Zbl 0673.92007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.