Kumar, Vipin; Djemai, Mohamed; Defoort, Michael; Malik, Muslim Finite-time stability and stabilization results for switched impulsive dynamical systems on time scales. (English) Zbl 07305982 J. Franklin Inst. 358, No. 1, 674-698 (2021). MSC: 93D40 93D15 93C30 93C27 92D25 PDF BibTeX XML Cite \textit{V. Kumar} et al., J. Franklin Inst. 358, No. 1, 674--698 (2021; Zbl 07305982) Full Text: DOI
Pu, Liqiong; Lin, Zhigui Effects of depth and evolving rate on phytoplankton growth in a periodically evolving environment. (English) Zbl 1453.92258 J. Math. Anal. Appl. 493, No. 1, Article ID 124502, 17 p. (2021). MSC: 92D25 92D40 92C80 PDF BibTeX XML Cite \textit{L. Pu} and \textit{Z. Lin}, J. Math. Anal. Appl. 493, No. 1, Article ID 124502, 17 p. (2021; Zbl 1453.92258) Full Text: DOI
Banerjee, M.; Volpert, V. Stochastic intracellular regulation can remove oscillations in a model of tissue growth. (English) Zbl 07303026 Math. Med. Biol. 37, No. 4, 551-568 (2020). MSC: 92C37 92D25 PDF BibTeX XML Cite \textit{M. Banerjee} and \textit{V. Volpert}, Math. Med. Biol. 37, No. 4, 551--568 (2020; Zbl 07303026) Full Text: DOI
Hang, Lei; Zhang, Long; Wang, Xiaowen Dynamic analysis for a class of predator-prey model with general functional response under seasonal succession. (Chinese. English summary) Zbl 07295856 J. Tianjin Norm. Univ., Nat. Sci. Ed. 40, No. 3, 6-11 (2020). MSC: 34C11 92D25 PDF BibTeX XML Cite \textit{L. Hang} et al., J. Tianjin Norm. Univ., Nat. Sci. Ed. 40, No. 3, 6--11 (2020; Zbl 07295856) Full Text: DOI
Cayssials, Gaston; Picasso, Santiago The Solow-Swan model with endogenous population growth. (English) Zbl 07294464 J. Dyn. Games 7, No. 3, 197-208 (2020). MSC: 91B62 91D20 PDF BibTeX XML Cite \textit{G. Cayssials} and \textit{S. Picasso}, J. Dyn. Games 7, No. 3, 197--208 (2020; Zbl 07294464) Full Text: DOI
Mokhtar-Kharroubi, Mustapha Spectra of structured diffusive population equations with generalized Wentzell-Robin boundary conditions and related topics. (English) Zbl 07293008 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3551-3563 (2020). MSC: 47D06 92D25 35B40 35B50 PDF BibTeX XML Cite \textit{M. Mokhtar-Kharroubi}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3551--3563 (2020; Zbl 07293008) Full Text: DOI
Huang, Chuangxia; Zhao, Xian; Cao, Jinde; Alsaadi, Fuad E. Global dynamics of neoclassical growth model with multiple pairs of variable delays. (English) Zbl 07278325 Nonlinearity 33, No. 12, 6819-6834 (2020). MSC: 34K60 92D25 34K21 34K20 34K25 34K13 PDF BibTeX XML Cite \textit{C. Huang} et al., Nonlinearity 33, No. 12, 6819--6834 (2020; Zbl 07278325) Full Text: DOI
Calatayud, Julia; Cortés, Juan Carlos; Jornet, Marc Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC. (English) Zbl 07276489 Math. Methods Appl. Sci. 43, No. 14, 7885-7904 (2020). MSC: 34C60 34F05 62F15 62P10 65C30 65C60 92D25 PDF BibTeX XML Cite \textit{J. Calatayud} et al., Math. Methods Appl. Sci. 43, No. 14, 7885--7904 (2020; Zbl 07276489) Full Text: DOI
Shi, Yayong; Nian, Fuzhong; Liu, Jinshuo; Cao, Jun Propagation dynamics of COVID-19 in high-risk population dynamic network. (Chinese. English summary) Zbl 07266514 Control Theory Appl. 37, No. 3, 461-468 (2020). MSC: 34D20 92D30 PDF BibTeX XML Cite \textit{Y. Shi} et al., Control Theory Appl. 37, No. 3, 461--468 (2020; Zbl 07266514) Full Text: DOI
Efford, Murray G.; Schofield, Matthew R. A spatial open-population capture-recapture model. (English) Zbl 1451.62118 Biometrics 76, No. 2, 392-402 (2020). MSC: 62P10 62N05 62H11 62M10 PDF BibTeX XML Cite \textit{M. G. Efford} and \textit{M. R. Schofield}, Biometrics 76, No. 2, 392--402 (2020; Zbl 1451.62118) Full Text: DOI
Nath, Binayak; Kumar, Vikas; Kumari, Nitu; Roy, Prodip; Das, Krishna Pada Role of cannibalism in controlling chaos in Lesile-Gower-type tritrophic food chain model. (English) Zbl 07264969 Nonlinear Stud. 27, No. 3, 699-723 (2020). MSC: 34C60 92D25 34C05 34D20 34C23 34C28 34H10 34C11 34C20 34C45 PDF BibTeX XML Cite \textit{B. Nath} et al., Nonlinear Stud. 27, No. 3, 699--723 (2020; Zbl 07264969) Full Text: Link
Öz, Mehmet Large deviations for local mass of branching Brownian motion. (English) Zbl 1453.60146 ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 711-731 (2020). MSC: 60J80 60F10 92D25 PDF BibTeX XML Cite \textit{M. Öz}, ALEA, Lat. Am. J. Probab. Math. Stat. 17, No. 2, 711--731 (2020; Zbl 1453.60146) Full Text: Link
Brida, Juan Gabriel; Cayssials, Gaston Economic growth and population models: a discrete time analysis. (English) Zbl 1448.91170 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 155-167 (2020). MSC: 91B62 91D20 PDF BibTeX XML Cite \textit{J. G. Brida} and \textit{G. Cayssials}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 27, No. 3, 155--167 (2020; Zbl 1448.91170) Full Text: Link
Lyu, Jingjing; Auker, Linda A.; Priyadarshi, Anupam; Parshad, Rana D. The effects of invasive epibionts on crab-mussel communities: a theoretical approach to understand mussel population decline. (English) Zbl 1445.92246 J. Biol. Syst. 28, No. 1, 127-166 (2020). MSC: 92D25 92D40 34C11 34C23 49J15 PDF BibTeX XML Cite \textit{J. Lyu} et al., J. Biol. Syst. 28, No. 1, 127--166 (2020; Zbl 1445.92246) Full Text: DOI
Zhao, Yihan; Xia, Yuanpei; Yang, Zhichun Asymptotic behavior of stochastic three-species predator-prey systems with white and Lévy noise. (English) Zbl 1451.34072 Electron. J. Differ. Equ. 2020, Paper No. 71, 17 p. (2020). MSC: 34C60 34F05 92D25 34C11 34D05 34D20 60H10 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Electron. J. Differ. Equ. 2020, Paper No. 71, 17 p. (2020; Zbl 1451.34072) Full Text: Link
Guo, Qian; He, Xiaoqing; Ni, Wei-Ming Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. (English) Zbl 1442.92129 Discrete Contin. Dyn. Syst. 40, No. 11, 6547-6573 (2020). MSC: 92D25 92D40 35K57 35B40 PDF BibTeX XML Cite \textit{Q. Guo} et al., Discrete Contin. Dyn. Syst. 40, No. 11, 6547--6573 (2020; Zbl 1442.92129) Full Text: DOI
Oliveira, Karen A.; Berbert, Juliana M. Crossover in spreading behavior due to memory in population dynamics. (English) Zbl 1448.92243 Math. Biosci. 324, Article ID 108346, 8 p. (2020). MSC: 92D25 35K57 PDF BibTeX XML Cite \textit{K. A. Oliveira} and \textit{J. M. Berbert}, Math. Biosci. 324, Article ID 108346, 8 p. (2020; Zbl 1448.92243) Full Text: DOI
Nafidi, Ahmed; Moutabir, Ghizlane; Gutiérrez-Sánchez, Ramón; Ramos-Ábalos, Eva Stochastic square of the Brennan-Schwartz diffusion process: statistical computation and application. (English) Zbl 1448.62139 Methodol. Comput. Appl. Probab. 22, No. 2, 455-476 (2020). MSC: 62M30 60H30 60J60 65C30 62P25 PDF BibTeX XML Cite \textit{A. Nafidi} et al., Methodol. Comput. Appl. Probab. 22, No. 2, 455--476 (2020; Zbl 1448.62139) Full Text: DOI
Guo, Qian; He, Xiaoqing; Ni, Wei-Ming On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments. (English) Zbl 1444.92088 J. Math. Biol. 81, No. 2, 403-433 (2020). MSC: 92D25 92D40 35K57 35B40 PDF BibTeX XML Cite \textit{Q. Guo} et al., J. Math. Biol. 81, No. 2, 403--433 (2020; Zbl 1444.92088) Full Text: DOI
Brites, Nuno M.; Braumann, Carlos A. Harvesting policies with stepwise effort and logistic growth in a random environment. (English) Zbl 1447.37078 Aguiar, Maira (ed.) et al., Current trends in dynamical systems in biology and natural sciences. Selected contributions presented at the ninth international workshop of dynamical systems applied to biology and natural sciences, DSABNS, Turin, Italy, February 7–9, 2018. Cham: Springer. SEMA SIMAI Springer Ser. 21, 95-110 (2020). MSC: 37N25 92D25 92B05 92D40 PDF BibTeX XML Cite \textit{N. M. Brites} and \textit{C. A. Braumann}, SEMA SIMAI Springer Ser. 21, 95--110 (2020; Zbl 1447.37078) Full Text: DOI
Goel, Namita; Chauhan, Sudipa; Bhatia, Sumit Kaur Effect of habitat on dynamic of native and exotic prey-predator population. (English) Zbl 1447.92338 Deo, Naokant (ed.) et al., Mathematical analysis II: Optimisation, differential equations and graph theory. Proceedings of the international conference on recent advances in pure and applied mathematics 2018, ICRAPAM 2018, New Delhi, India, October 23–25, 2018. Dedicated to the memory of Prof. Niranjan Singh. Singapore: Springer. Springer Proc. Math. Stat. 307, 123-136 (2020). MSC: 92D25 92D40 34D23 34C11 PDF BibTeX XML Cite \textit{N. Goel} et al., Springer Proc. Math. Stat. 307, 123--136 (2020; Zbl 1447.92338) Full Text: DOI
Brew, Lewis; Obeng-Denteh, William; Asante-Mensa, Fred Analytical consideration of growth in population via homological invariant in algebraic topology. (English) Zbl 1448.92179 J. Math. 2020, Article ID 4948304, 5 p. (2020). MSC: 92D25 55U10 PDF BibTeX XML Cite \textit{L. Brew} et al., J. Math. 2020, Article ID 4948304, 5 p. (2020; Zbl 1448.92179) Full Text: DOI
Fadai, Nabil T.; Simpson, Matthew J. Population dynamics with threshold effects give rise to a diverse family of allee effects. (English) Zbl 1444.92086 Bull. Math. Biol. 82, No. 6, Paper No. 74, 22 p. (2020). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{N. T. Fadai} and \textit{M. J. Simpson}, Bull. Math. Biol. 82, No. 6, Paper No. 74, 22 p. (2020; Zbl 1444.92086) Full Text: DOI
Mokhtar-Kharroubi, Mustapha; Richard, Quentin Spectral theory and time asymptotics of size-structured two-phase population models. (English) Zbl 1448.35345 Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 2969-3004 (2020). MSC: 35P05 35B40 47D06 92D25 35Q92 35F46 PDF BibTeX XML Cite \textit{M. Mokhtar-Kharroubi} and \textit{Q. Richard}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 2969--3004 (2020; Zbl 1448.35345) Full Text: DOI
Chen, Deliang Regularity properties of some perturbations of non-densely defined operators with applications. (English) Zbl 07207975 J. Evol. Equ. 20, No. 2, 659-702 (2020); correction ibid. 20, No. 2, 703-704 (2020). MSC: 47A55 34D10 34K12 47N20 47D62 PDF BibTeX XML Cite \textit{D. Chen}, J. Evol. Equ. 20, No. 2, 659--702 (2020; Zbl 07207975) Full Text: DOI
Hernández, Eduardo; Trofimchuk, Sergei Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP-Fisher equation. (English) Zbl 1443.34065 J. Dyn. Differ. Equations 32, No. 2, 921-939 (2020). MSC: 34K10 34K12 34K16 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{E. Hernández} and \textit{S. Trofimchuk}, J. Dyn. Differ. Equations 32, No. 2, 921--939 (2020; Zbl 1443.34065) Full Text: DOI
Tal, Omri; Tran, Tat Dat Adaptive bet-hedging revisited: considerations of risk and time horizon. (English) Zbl 1437.92091 Bull. Math. Biol. 82, No. 4, Paper No. 50, 32 p. (2020). MSC: 92D15 92D25 91A80 PDF BibTeX XML Cite \textit{O. Tal} and \textit{T. D. Tran}, Bull. Math. Biol. 82, No. 4, Paper No. 50, 32 p. (2020; Zbl 1437.92091) Full Text: DOI
Córdova-Lepe, Fernando; Gutiérrez, Rodrigo; Vilches-Ponce, Karina Analysis of two discrete forms of the classic continuous SIR epidemiological model. (English) Zbl 1436.39011 J. Difference Equ. Appl. 26, No. 1, 1-24 (2020). MSC: 39A60 39A22 37N25 92D25 PDF BibTeX XML Cite \textit{F. Córdova-Lepe} et al., J. Difference Equ. Appl. 26, No. 1, 1--24 (2020; Zbl 1436.39011) Full Text: DOI
Heydari, Mohammad Hossein; Hooshmandasl, Mohammad Reza; Cattani, Carlo Wavelets method for solving nonlinear stochastic Itô-Volterra integral equations. (English) Zbl 07188075 Georgian Math. J. 27, No. 1, 81-95 (2020). MSC: 60H20 PDF BibTeX XML Cite \textit{M. H. Heydari} et al., Georgian Math. J. 27, No. 1, 81--95 (2020; Zbl 07188075) Full Text: DOI
Huang, Yongyan; Li, Fuyi; Shi, Junping Stability of synchronized steady state solution of diffusive Lotka-Volterra predator-prey model. (English) Zbl 1437.35672 Appl. Math. Lett. 105, Article ID 106331, 5 p. (2020). MSC: 35Q92 35B35 35K57 35K51 92D25 PDF BibTeX XML Cite \textit{Y. Huang} et al., Appl. Math. Lett. 105, Article ID 106331, 5 p. (2020; Zbl 1437.35672) Full Text: DOI
Parshad, Rana D.; Wickramsooriya, Sureni; Bailey, Susan A remark on “Biological control through provision of additional food to predators: a theoretical study”. (English) Zbl 07186943 Theor. Popul. Biol. 132, 60-68 (2020). MSC: 34C11 34D05 92D25 92D40 PDF BibTeX XML Cite \textit{R. D. Parshad} et al., Theor. Popul. Biol. 132, 60--68 (2020; Zbl 07186943) Full Text: DOI
Cavalli, Benedetta On a family of critical growth-fragmentation semigroups and refracted Lévy processes. (English) Zbl 1439.35487 Acta Appl. Math. 166, No. 1, 161-186 (2020). MSC: 35Q92 47D06 47G20 45K05 60G51 60J99 92D25 35B40 35Q49 92C37 PDF BibTeX XML Cite \textit{B. Cavalli}, Acta Appl. Math. 166, No. 1, 161--186 (2020; Zbl 1439.35487) Full Text: DOI
Bubba, Federica; Perthame, Benoît; Pouchol, Camille; Schmidtchen, Markus Hele-Shaw limit for a system of two reaction-(Cross-)diffusion equations for living tissues. (English) Zbl 1435.35390 Arch. Ration. Mech. Anal. 236, No. 2, 735-766 (2020). MSC: 35Q92 35R35 92C37 92D25 92C50 76S05 76N06 35M10 35L65 PDF BibTeX XML Cite \textit{F. Bubba} et al., Arch. Ration. Mech. Anal. 236, No. 2, 735--766 (2020; Zbl 1435.35390) Full Text: DOI
Bai, Dingyong; Yu, Jianshe; Fan, Meng; Kang, Yun Dynamics for a non-autonomous predator-prey system with generalist predator. (English) Zbl 1443.92148 J. Math. Anal. Appl. 485, No. 2, Article ID 123820, 31 p. (2020). Reviewer: Ábel Garab (Szeged) MSC: 92D25 34D23 34C11 34C25 PDF BibTeX XML Cite \textit{D. Bai} et al., J. Math. Anal. Appl. 485, No. 2, Article ID 123820, 31 p. (2020; Zbl 1443.92148) Full Text: DOI
Baker, Ruth E.; Röst, Gergely Global dynamics of a novel delayed logistic equation arising from cell biology. (English) Zbl 1448.92170 J. Nonlinear Sci. 30, No. 1, 397-418 (2020). Reviewer: Leonid Berezanski (Beer-Sheva) MSC: 92D25 92C37 34K20 PDF BibTeX XML Cite \textit{R. E. Baker} and \textit{G. Röst}, J. Nonlinear Sci. 30, No. 1, 397--418 (2020; Zbl 1448.92170) Full Text: DOI
Goncalves, Branda; Huillet, Thierry Scaling features of two special Markov chains involving total disasters. (English) Zbl 07174434 J. Stat. Phys. 178, No. 2, 499-531 (2020). MSC: 60J10 42C05 PDF BibTeX XML Cite \textit{B. Goncalves} and \textit{T. Huillet}, J. Stat. Phys. 178, No. 2, 499--531 (2020; Zbl 07174434) Full Text: DOI
Chladná, Zuzana; Hasík, Karel; Kopfová, Jana; Nábělková, Petra; Trofimchuk, Sergei Nonlinearly determined wavefronts of the Nicholson’s diffusive equation: when small delays are not harmless. (English) Zbl 1443.34073 J. Differ. Equations 268, No. 9, 5156-5178 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34K16 34K12 35C07 35K57 35R10 92D25 PDF BibTeX XML Cite \textit{Z. Chladná} et al., J. Differ. Equations 268, No. 9, 5156--5178 (2020; Zbl 1443.34073) Full Text: DOI
Zhao, Shengnan; Yuan, Sanling; Wang, Hao Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation. (English) Zbl 1433.92045 J. Differ. Equations 268, No. 9, 5113-5139 (2020). Reviewer: Fatima T. Adylova (Tashkent) MSC: 92D25 92D40 92C80 34C25 60H30 PDF BibTeX XML Cite \textit{S. Zhao} et al., J. Differ. Equations 268, No. 9, 5113--5139 (2020; Zbl 1433.92045) Full Text: DOI
Song, Da; Fan, Meng; Yan, Shihan; Liu, Meng Dynamics of a nutrient-phytoplankton model with random phytoplankton mortality. (English) Zbl 1430.92132 J. Theor. Biol. 488, Article ID 110119, 13 p. (2020). MSC: 92D40 92D25 93E15 PDF BibTeX XML Cite \textit{D. Song} et al., J. Theor. Biol. 488, Article ID 110119, 13 p. (2020; Zbl 1430.92132) Full Text: DOI
Lois-Prados, Cristina; Precup, Radu Positive periodic solutions for Lotka-Volterra systems with a general attack rate. (English) Zbl 1433.34066 Nonlinear Anal., Real World Appl. 52, Article ID 103024, 17 p. (2020). MSC: 34C60 92D25 37C60 34C25 PDF BibTeX XML Cite \textit{C. Lois-Prados} and \textit{R. Precup}, Nonlinear Anal., Real World Appl. 52, Article ID 103024, 17 p. (2020; Zbl 1433.34066) Full Text: DOI
Lin, Fubiao; Zhang, Qianhong Exact solutions of population balance equations for breakage and growth processes, using group analysis. (English) Zbl 1433.45009 Appl. Math. Comput. 368, Article ID 124790, 14 p. (2020). MSC: 45K05 92D25 PDF BibTeX XML Cite \textit{F. Lin} and \textit{Q. Zhang}, Appl. Math. Comput. 368, Article ID 124790, 14 p. (2020; Zbl 1433.45009) Full Text: DOI
Iparraguirre, José Luis Economics and ageing. Volume III: Long-term care and finance. (English) Zbl 1453.91002 Cham: Palgrave Macmillan (ISBN 978-3-030-29018-4/pbk; 978-3-030-29019-1/ebook). xiii, 594 p. (2020). Reviewer: Tak Kuen Siu (Sydney) MSC: 91-02 91B39 91D20 91G05 91B64 91B05 91B62 PDF BibTeX XML Cite \textit{J. L. Iparraguirre}, Economics and ageing. Volume III: Long-term care and finance. Cham: Palgrave Macmillan (2020; Zbl 1453.91002) Full Text: DOI
Parshad, Rana D.; Takyi, Eric M.; Kouachi, Said A remark on “Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators”. (English) Zbl 1448.34073 Chaos Solitons Fractals 123, 201-205 (2019). MSC: 34C11 34D45 92D25 PDF BibTeX XML Cite \textit{R. D. Parshad} et al., Chaos Solitons Fractals 123, 201--205 (2019; Zbl 1448.34073) Full Text: DOI
Klimasara, Paweł Revisiting the logistic growth with random disturbances. (English) Zbl 1453.92353 Math. Appl. (Warsaw) 47, No. 2, 177-186 (2019). MSC: 92D40 92D25 60J25 PDF BibTeX XML Cite \textit{P. Klimasara}, Math. Appl. (Warsaw) 47, No. 2, 177--186 (2019; Zbl 1453.92353) Full Text: DOI
Shi, Lili; Liu, Guirong A class of the stochastic predator-prey model with delay and Lévy jump. (Chinese. English summary) Zbl 1449.34294 J. Yunnan Minzu Univ., Nat. Sci. 28, No. 5, 470-474, 490 (2019). MSC: 34K60 34K50 60H10 92D25 34K12 34K25 PDF BibTeX XML Cite \textit{L. Shi} and \textit{G. Liu}, J. Yunnan Minzu Univ., Nat. Sci. 28, No. 5, 470--474, 490 (2019; Zbl 1449.34294) Full Text: DOI
Razzhevaikin, V. N. Instability of solutions of Volterra type systems depending on the asymptotic localization of the Malthusian vector. (English. Russian original) Zbl 1444.34067 Differ. Equ. 55, No. 12, 1581-1588 (2019); translation from Differ. Uravn. 55, No. 12, 1636-1643 (2019). MSC: 34D20 92D25 34C11 34D05 PDF BibTeX XML Cite \textit{V. N. Razzhevaikin}, Differ. Equ. 55, No. 12, 1581--1588 (2019; Zbl 1444.34067); translation from Differ. Uravn. 55, No. 12, 1636--1643 (2019) Full Text: DOI
Cipriani, Giam Pietro; Fioroni, Tamara Health spending, education and endogenous demographics in an OLG model. (English) Zbl 1437.91291 Bucci, Alberto (ed.) et al., Human capital and economic growth. The impact of health, education and demographic change. Cham: Palgrave Macmillan. 209-249 (2019). MSC: 91B62 91B18 91D20 PDF BibTeX XML Cite \textit{G. P. Cipriani} and \textit{T. Fioroni}, in: Human capital and economic growth. The impact of health, education and demographic change. Cham: Palgrave Macmillan. 209--249 (2019; Zbl 1437.91291) Full Text: DOI
Ackleh, Azmy S.; Miller, Robert L. A numerical method for a nonlinear structured population model with an indefinite growth rate coupled with the environment. (English) Zbl 1431.65129 Numer. Methods Partial Differ. Equations 35, No. 6, 2348-2374 (2019). MSC: 65M06 35Q92 92D25 65M15 65M12 34B60 PDF BibTeX XML Cite \textit{A. S. Ackleh} and \textit{R. L. Miller}, Numer. Methods Partial Differ. Equations 35, No. 6, 2348--2374 (2019; Zbl 1431.65129) Full Text: DOI
Bentounsi, Meriem; Agmour, Imane; Achtaich, Naceur; El Foutayeni, Youssef Intrinsic growth rates influence on the net economic rents of fishermen. (English) Zbl 1441.92030 Int. J. Dyn. Syst. Differ. Equ. 9, No. 4, 362-379 (2019). MSC: 92D25 92D40 37N25 37N40 91B62 PDF BibTeX XML Cite \textit{M. Bentounsi} et al., Int. J. Dyn. Syst. Differ. Equ. 9, No. 4, 362--379 (2019; Zbl 1441.92030) Full Text: DOI
Das, Krishna Pada; Ghosh, Subhabrata; Maiti, Somnath Disappearance of limit cycle oscillations in a predator-prey model: role of mortality due to predation of infected prey. (English) Zbl 1441.92032 Int. J. Dyn. Syst. Differ. Equ. 9, No. 3, 262-285 (2019). MSC: 92D25 92D30 34C10 37N25 PDF BibTeX XML Cite \textit{K. P. Das} et al., Int. J. Dyn. Syst. Differ. Equ. 9, No. 3, 262--285 (2019; Zbl 1441.92032) Full Text: DOI
Fu, Yingjie; Lan, Guijie; Zhang, Shuwen; Wei, Chunjin Dynamics of a stochastic predator-prey model with pulse input in a polluted environment. (Chinese. English summary) Zbl 1449.34131 Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 674-688 (2019). MSC: 34C60 60H10 92D25 34F05 34C11 34C25 34D05 PDF BibTeX XML Cite \textit{Y. Fu} et al., Acta Math. Sci., Ser. A, Chin. Ed. 39, No. 3, 674--688 (2019; Zbl 1449.34131)
Brilhante, M. Fátima; Gomes, M. Ivette; Pestana, Dinis Modeling risk of extreme events in generalized Verhulst models. (English) Zbl 1427.60096 REVSTAT 17, No. 2, 145-162 (2019). MSC: 60G70 62P10 92D25 PDF BibTeX XML Cite \textit{M. F. Brilhante} et al., REVSTAT 17, No. 2, 145--162 (2019; Zbl 1427.60096) Full Text: Link
Koskela, Jere; Berenguer, Maite Wilke Robust model selection between population growth and multiple merger coalescents. (English) Zbl 1425.92141 Math. Biosci. 311, 1-12 (2019). MSC: 92D15 92D10 62P10 62H15 PDF BibTeX XML Cite \textit{J. Koskela} and \textit{M. W. Berenguer}, Math. Biosci. 311, 1--12 (2019; Zbl 1425.92141) Full Text: DOI
Alexandrov, D. V.; Ivanov, A. A.; Alexandrova, I. V. The influence of Brownian coagulation on the particle-size distribution function in supercooled melts and supersaturated solutions. (English) Zbl 1422.82009 J. Phys. A, Math. Theor. 52, No. 1, Article ID 015101, 12 p. (2019). MSC: 82B24 82C24 82B26 82C26 60J70 47G20 PDF BibTeX XML Cite \textit{D. V. Alexandrov} et al., J. Phys. A, Math. Theor. 52, No. 1, Article ID 015101, 12 p. (2019; Zbl 1422.82009) Full Text: DOI
Bertoin, Jean On a Feynman-Kac approach to growth-fragmentation semigroups and their asymptotic behaviors. (English) Zbl 1433.35414 J. Funct. Anal. 277, No. 11, Article ID 108270, 29 p. (2019). Reviewer: Zhen Chao (Milwaukee) MSC: 35Q92 37A30 47D06 60G46 60J25 92D25 35R09 35B40 PDF BibTeX XML Cite \textit{J. Bertoin}, J. Funct. Anal. 277, No. 11, Article ID 108270, 29 p. (2019; Zbl 1433.35414) Full Text: DOI
Michel, Philippe Bang-bang growth rate optimization in a coupled McKendrick model. (English) Zbl 07112089 J. Optim. Theory Appl. 183, No. 1, 332-351 (2019). MSC: 65N25 35Q93 49J30 92D25 35Q92 PDF BibTeX XML Cite \textit{P. Michel}, J. Optim. Theory Appl. 183, No. 1, 332--351 (2019; Zbl 07112089) Full Text: DOI
Accinelli, Elvio; Carrera, Edgar Sánchez; Policardo, Laura; Salas, Osvaldo Free mobility of capital and labor force in a two-country model: the dynamic game for growth. (English) Zbl 1425.91287 J. Dyn. Games 6, No. 3, 179-194 (2019). MSC: 91B62 91B40 91B66 91A25 91A80 PDF BibTeX XML Cite \textit{E. Accinelli} et al., J. Dyn. Games 6, No. 3, 179--194 (2019; Zbl 1425.91287) Full Text: DOI
Vanterler da C. Sousa, J.; Capelas de Oliveira, E. On the \(\Psi \)-fractional integral and applications. (English) Zbl 07101179 Comput. Appl. Math. 38, No. 1, Paper No. 4, 22 p. (2019). MSC: 26A33 PDF BibTeX XML Cite \textit{J. Vanterler da C. Sousa} and \textit{E. Capelas de Oliveira}, Comput. Appl. Math. 38, No. 1, Paper No. 4, 22 p. (2019; Zbl 07101179) Full Text: DOI
Bernard, Étienne; Doumic, Marie; Gabriel, Pierre Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. (English) Zbl 1420.35431 Kinet. Relat. Models 12, No. 3, 551-571 (2019). MSC: 35Q92 35B10 35B40 47D06 35P05 35B41 92D25 92B25 PDF BibTeX XML Cite \textit{É. Bernard} et al., Kinet. Relat. Models 12, No. 3, 551--571 (2019; Zbl 1420.35431) Full Text: DOI
Molina, Manuel; Mota, Manuel Population-dependent two-sex branching processes with random mating: rates of growth. (English) Zbl 07098178 Stoch. Models 35, No. 3, 252-268 (2019). MSC: 60 91 90 PDF BibTeX XML Cite \textit{M. Molina} and \textit{M. Mota}, Stoch. Models 35, No. 3, 252--268 (2019; Zbl 07098178) Full Text: DOI
Franco, D.; Guiver, C.; Logemann, H.; Perán, J. Boundedness, persistence and stability for classes of forced difference equations arising in population ecology. (English) Zbl 1422.37067 J. Math. Biol. 79, No. 3, 1029-1076 (2019). Reviewer: Fatima T. Adylova (Tashkent) MSC: 37N25 39A22 39A30 92D25 92D40 PDF BibTeX XML Cite \textit{D. Franco} et al., J. Math. Biol. 79, No. 3, 1029--1076 (2019; Zbl 1422.37067) Full Text: DOI
Pérez-Nievas, Mikel; Conde-Ruiz, José I.; Giménez, Eduardo L. Efficiency and endogenous fertility. (English) Zbl 1422.91505 Theor. Econ. 14, No. 2, 475-512 (2019). MSC: 91B62 PDF BibTeX XML Cite \textit{M. Pérez-Nievas} et al., Theor. Econ. 14, No. 2, 475--512 (2019; Zbl 1422.91505) Full Text: DOI
Högnäs, Göran On the lifetime of a size-dependent branching process. (English) Zbl 07076053 Stoch. Models 35, No. 2, 119-131 (2019). MSC: 60J80 60J05 60J20 60F10 92D25 PDF BibTeX XML Cite \textit{G. Högnäs}, Stoch. Models 35, No. 2, 119--131 (2019; Zbl 07076053) Full Text: DOI
Trofimchuk, Sergei; Volpert, Vitaly Global continuation of monotone waves for bistable delayed equations with unimodal nonlinearities. (English) Zbl 1423.34082 Nonlinearity 32, No. 7, 2593-2632 (2019). MSC: 34K12 35K10 92D25 35C07 35R10 PDF BibTeX XML Cite \textit{S. Trofimchuk} and \textit{V. Volpert}, Nonlinearity 32, No. 7, 2593--2632 (2019; Zbl 1423.34082) Full Text: DOI
López-de-la-Cruz, Javier Random and stochastic disturbances on the input flow in chemostat models with wall growth. (English) Zbl 1416.92182 Stochastic Anal. Appl. 37, No. 4, 668-698 (2019). MSC: 92D40 92D25 60J60 60H10 PDF BibTeX XML Cite \textit{J. López-de-la-Cruz}, Stochastic Anal. Appl. 37, No. 4, 668--698 (2019; Zbl 1416.92182) Full Text: DOI
Li, Jingjie; Wu, Jiang-Lun; Zhang, Guang Estimation of intrinsic growth factors in a class of stochastic population model. (English) Zbl 1415.60064 Stochastic Anal. Appl. 37, No. 4, 602-619 (2019). MSC: 60H10 62F12 62M05 PDF BibTeX XML Cite \textit{J. Li} et al., Stochastic Anal. Appl. 37, No. 4, 602--619 (2019; Zbl 1415.60064) Full Text: DOI
Lou, Yijun; Liu, Kaihui; He, Daihai; Gao, Daozhou; Ruan, Shigui Modelling diapause in mosquito population growth. (English) Zbl 1411.37070 J. Math. Biol. 78, No. 7, 2259-2288 (2019). MSC: 37N25 34K60 92D40 PDF BibTeX XML Cite \textit{Y. Lou} et al., J. Math. Biol. 78, No. 7, 2259--2288 (2019; Zbl 1411.37070) Full Text: DOI
Hens, Thorsten; Elmiger, Sabine Economic foundations for finance. From Main Street to Wall Street. (English) Zbl 1430.91004 Springer Texts in Business and Economics. Cham: Springer (ISBN 978-3-030-05425-0/hbk; 978-3-030-05427-4/ebook). xi, 178 p. (2019). Reviewer: Vassil Grozdanov (Blagoevgrad) MSC: 91-01 91G15 91B50 91B62 91B66 PDF BibTeX XML Cite \textit{T. Hens} and \textit{S. Elmiger}, Economic foundations for finance. From Main Street to Wall Street. Cham: Springer (2019; Zbl 1430.91004) Full Text: DOI
Yan, Dongxue; Fu, Xianlong Asymptotic analysis of a size-structured population model with infinite states-at-birth. (English) Zbl 1414.35246 Appl. Anal. 98, No. 5, 913-933 (2019). MSC: 35Q92 35F30 92D25 34D20 35B40 35B35 PDF BibTeX XML Cite \textit{D. Yan} and \textit{X. Fu}, Appl. Anal. 98, No. 5, 913--933 (2019; Zbl 1414.35246) Full Text: DOI
Solar, Abraham; Trofimchuk, Sergei A simple approach to the wave uniqueness problem. (English) Zbl 1410.34189 J. Differ. Equations 266, No. 10, 6647-6660 (2019). MSC: 34K10 34K12 92D25 35R10 35C07 PDF BibTeX XML Cite \textit{A. Solar} and \textit{S. Trofimchuk}, J. Differ. Equations 266, No. 10, 6647--6660 (2019; Zbl 1410.34189) Full Text: DOI
Borsali, Fethi; Yadi, Karim Persistent competition models on two complementary nutrients with density-dependent consumption rates. (English) Zbl 1410.34134 Ann. Mat. Pura Appl. (4) 198, No. 1, 1-25 (2019). MSC: 34C60 34C11 92D25 34D05 34C05 PDF BibTeX XML Cite \textit{F. Borsali} and \textit{K. Yadi}, Ann. Mat. Pura Appl. (4) 198, No. 1, 1--25 (2019; Zbl 1410.34134) Full Text: DOI
Huang, Haomin; Wang, Mingxin A time-periodic diffusive prey-predator model with sign-changing growth rates and a free boundary. (English) Zbl 1412.35342 Nonlinear Anal., Real World Appl. 46, 157-177 (2019). MSC: 35Q92 92D25 35R35 35B09 PDF BibTeX XML Cite \textit{H. Huang} and \textit{M. Wang}, Nonlinear Anal., Real World Appl. 46, 157--177 (2019; Zbl 1412.35342) Full Text: DOI
Zheng, Wei; Sugie, Jitsuro Uniform global asymptotic stability of time-varying Lotka-Volterra predator-prey systems. (English) Zbl 1412.34164 Appl. Math. Lett. 87, 125-133 (2019). MSC: 34C60 34D23 92D25 PDF BibTeX XML Cite \textit{W. Zheng} and \textit{J. Sugie}, Appl. Math. Lett. 87, 125--133 (2019; Zbl 1412.34164) Full Text: DOI
Wang, Wentao; Wang, Liqing; Chen, Wei Stochastic Nicholson’s blowflies delayed differential equations. (English) Zbl 1408.34067 Appl. Math. Lett. 87, 20-26 (2019). MSC: 34K60 34K12 92D25 60J65 PDF BibTeX XML Cite \textit{W. Wang} et al., Appl. Math. Lett. 87, 20--26 (2019; Zbl 1408.34067) Full Text: DOI
Corkrey, Ross; Macdonald, Cameron; McMeekin, Tom The biokinetic spectrum for temperature and optimal Darwinian fitness. (English) Zbl 1406.92421 J. Theor. Biol. 462, 171-183 (2019). MSC: 92D15 92D25 92D40 PDF BibTeX XML Cite \textit{R. Corkrey} et al., J. Theor. Biol. 462, 171--183 (2019; Zbl 1406.92421) Full Text: DOI
Bai, Meng; Xu, Shihe Asynchronous exponential growth for a two-phase size-structured population model and comparison with the corresponding one-phase model. (English) Zbl 1448.92168 J. Biol. Dyn. 12, No. 1, 683-699 (2018). MSC: 92D25 35A02 35B40 35Q92 PDF BibTeX XML Cite \textit{M. Bai} and \textit{S. Xu}, J. Biol. Dyn. 12, No. 1, 683--699 (2018; Zbl 1448.92168) Full Text: DOI
Traoré, Bakary; Sangaré, Boureima; Traoré, Sado Mathematical model of mosquito populations dynamics with logistic growth in a periodic environment. (English) Zbl 1438.37060 An. Univ. Craiova, Ser. Mat. Inf. 45, No. 1, 86-102 (2018). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{B. Traoré} et al., An. Univ. Craiova, Ser. Mat. Inf. 45, No. 1, 86--102 (2018; Zbl 1438.37060)
Zhao, Yeqing; Li, Guihua Dynamic analysis of a predator-prey model with Smith growth and hunting cooperation. (Chinese. English summary) Zbl 1438.34179 Math. Pract. Theory 48, No. 21, 284-289 (2018). MSC: 34C60 34C23 34D20 92D25 34D05 34C05 PDF BibTeX XML Cite \textit{Y. Zhao} and \textit{G. Li}, Math. Pract. Theory 48, No. 21, 284--289 (2018; Zbl 1438.34179)
Wang, Yan; Liu, Xianning A stage-structured predator-prey model with state-dependent delay. (Chinese. English summary) Zbl 1438.34310 J. Biomath. 33, No. 2, 171-178 (2018). MSC: 34K60 34K12 34K20 92D25 34K43 PDF BibTeX XML Cite \textit{Y. Wang} and \textit{X. Liu}, J. Biomath. 33, No. 2, 171--178 (2018; Zbl 1438.34310)
Goldwasser, Shafi; Ostrovsky, Rafail; Scafuro, Alessandra; Sealfon, Adam Population stability. Regulating size in the presence of an adversary. (English) Zbl 1428.68071 Proceedings of the 37th ACM symposium on principles of distributed computing, PODC ’18, Egham, UK, July 23–27, 2018. New York, NY: Association for Computing Machinery (ACM). 397-406 (2018). MSC: 68M14 PDF BibTeX XML Cite \textit{S. Goldwasser} et al., in: Proceedings of the 37th ACM symposium on principles of distributed computing, PODC '18, Egham, UK, July 23--27, 2018. New York, NY: Association for Computing Machinery (ACM). 397--406 (2018; Zbl 1428.68071) Full Text: DOI
Zubik-Kowal, B. An algorithm for partial functional differential equations modeling tumor growth. (English) Zbl 1426.92035 Appl. Math. Comput. 321, 85-92 (2018). MSC: 92C50 PDF BibTeX XML Cite \textit{B. Zubik-Kowal}, Appl. Math. Comput. 321, 85--92 (2018; Zbl 1426.92035) Full Text: DOI
Bai, Dingyong; Qiu, Lihua A predator-prey model with constant immigration and stage-structure. (Chinese. English summary) Zbl 1424.34135 J. Guangzhou Univ., Nat. Sci. 17, No. 2, 1-7 (2018). MSC: 34C60 34D20 92D25 34D05 34C11 34C05 37N25 PDF BibTeX XML Cite \textit{D. Bai} and \textit{L. Qiu}, J. Guangzhou Univ., Nat. Sci. 17, No. 2, 1--7 (2018; Zbl 1424.34135)
Huang, Kaijiao; Xiao, Feiyan A stochastic predator-prey system with Beddington-DeAngelis functional response. (Chinese. English summary) Zbl 1424.34144 J. Guangxi Norm. Univ., Nat. Sci. 36, No. 3, 32-40 (2018). MSC: 34C60 34D05 34D23 34F05 92D25 34C11 PDF BibTeX XML Cite \textit{K. Huang} and \textit{F. Xiao}, J. Guangxi Norm. Univ., Nat. Sci. 36, No. 3, 32--40 (2018; Zbl 1424.34144) Full Text: DOI
Calvez, Vincent; Perthame, Benoît; Yasuda, Shugo Traveling wave and aggregation in a flux-limited Keller-Segel model. (English) Zbl 1405.92030 Kinet. Relat. Models 11, No. 4, 891-909 (2018). MSC: 92C17 35C07 35K57 35Q92 PDF BibTeX XML Cite \textit{V. Calvez} et al., Kinet. Relat. Models 11, No. 4, 891--909 (2018; Zbl 1405.92030) Full Text: DOI
van Brunt, B.; Zaidi, A. A.; Lynch, T. Cell division and the pantograph equation. (English) Zbl 1406.92165 ESAIM, Proc. Surv. 62, 158-167 (2018). MSC: 92C37 34K25 34K17 PDF BibTeX XML Cite \textit{B. van Brunt} et al., ESAIM, Proc. Surv. 62, 158--167 (2018; Zbl 1406.92165) Full Text: DOI
Fang, Huiping; Hu, Ling; Wu, Yongfeng Delay-induced Hopf bifurcation in a diffusive Holling-Tanner predator-prey model with ratio-dependent response and Smith growth. (English) Zbl 1446.92222 Adv. Difference Equ. 2018, Paper No. 285, 11 p. (2018). MSC: 92D25 37N25 PDF BibTeX XML Cite \textit{H. Fang} et al., Adv. Difference Equ. 2018, Paper No. 285, 11 p. (2018; Zbl 1446.92222) Full Text: DOI
Xie, Baiyu; Xu, Fei Stability analysis for a time-delayed nonlinear predator-prey model. (English) Zbl 1445.37071 Adv. Difference Equ. 2018, Paper No. 122, 16 p. (2018). MSC: 37N25 92D25 PDF BibTeX XML Cite \textit{B. Xie} and \textit{F. Xu}, Adv. Difference Equ. 2018, Paper No. 122, 16 p. (2018; Zbl 1445.37071) Full Text: DOI
Chi, Mengnan; Zhao, Wencai Dynamical analysis of multi-nutrient and single microorganism chemostat model in a polluted environment. (English) Zbl 1445.92236 Adv. Difference Equ. 2018, Paper No. 120, 16 p. (2018). MSC: 92D25 92D40 60H10 65C30 PDF BibTeX XML Cite \textit{M. Chi} and \textit{W. Zhao}, Adv. Difference Equ. 2018, Paper No. 120, 16 p. (2018; Zbl 1445.92236) Full Text: DOI
Mazoyer, Adrien Fluctuation analysis on mutation models with birth-date dependence. (English) Zbl 1405.92078 Math. Biosci. 303, 83-100 (2018). MSC: 92C37 92D25 60J85 62P10 PDF BibTeX XML Cite \textit{A. Mazoyer}, Math. Biosci. 303, 83--100 (2018; Zbl 1405.92078) Full Text: DOI
Yan, Dongxue; Fu, Xianlong Asymptotic behavior of a hierarchical size-structured population model. (English) Zbl 1408.35201 Evol. Equ. Control Theory 7, No. 2, 293-316 (2018). MSC: 35Q92 35F30 92D25 34D20 35B40 35B35 PDF BibTeX XML Cite \textit{D. Yan} and \textit{X. Fu}, Evol. Equ. Control Theory 7, No. 2, 293--316 (2018; Zbl 1408.35201) Full Text: DOI
Liu, Jiamin; Chen, Lijuan; Wei, Fengying The persistence and extinction of a stochastic SIS epidemic model with logistic growth. (English) Zbl 1445.92276 Adv. Difference Equ. 2018, Paper No. 68, 10 p. (2018). MSC: 92D30 60H10 92D25 PDF BibTeX XML Cite \textit{J. Liu} et al., Adv. Difference Equ. 2018, Paper No. 68, 10 p. (2018; Zbl 1445.92276) Full Text: DOI
D’Amico, Guglielmo; Regnault, Philippe Dynamic measurement of poverty: modeling and estimation. (English) Zbl 1405.91406 Sankhyā, Ser. B 80, No. 2, 305-340 (2018). MSC: 91B62 91G70 91B82 60J25 PDF BibTeX XML Cite \textit{G. D'Amico} and \textit{P. Regnault}, Sankhyā, Ser. B 80, No. 2, 305--340 (2018; Zbl 1405.91406) Full Text: DOI
Mokhtar-Kharroubi, Mustapha; Richard, Quentin Time asymptotics of structured populations with diffusion and dynamic boundary conditions. (English) Zbl 06996867 Discrete Contin. Dyn. Syst., Ser. B 23, No. 10, 4087-4116 (2018). MSC: 47D06 92D25 35B40 35B50 PDF BibTeX XML Cite \textit{M. Mokhtar-Kharroubi} and \textit{Q. Richard}, Discrete Contin. Dyn. Syst., Ser. B 23, No. 10, 4087--4116 (2018; Zbl 06996867) Full Text: DOI
Faria, Teresa; Obaya, Rafael; Sanz, Ana M. Asymptotic behaviour for a class of non-monotone delay differential systems with applications. (English) Zbl 1414.34058 J. Dyn. Differ. Equations 30, No. 3, 911-935 (2018). Reviewer: Qiru Wang (Guangzhou) MSC: 34K25 34K12 34K27 34K20 92D25 PDF BibTeX XML Cite \textit{T. Faria} et al., J. Dyn. Differ. Equations 30, No. 3, 911--935 (2018; Zbl 1414.34058) Full Text: DOI arXiv
Olarte García, Julián Alejandro; Muñoz Loaiza, Aníbal A population growth model of ædes ægypti with logistic carrying capacity. (Spanish. English summary) Zbl 1398.92215 Rev. Mat. Teor. Apl. 25, No. 1, 79-113 (2018). MSC: 92D25 34D20 PDF BibTeX XML Cite \textit{J. A. Olarte García} and \textit{A. Muñoz Loaiza}, Rev. Mat. Teor. Apl. 25, No. 1, 79--113 (2018; Zbl 1398.92215)
Hening, Alexandru; Nguyen, Dang H. Persistence in stochastic Lotka-Volterra food chains with intraspecific competition. (English) Zbl 1400.92435 Bull. Math. Biol. 80, No. 10, 2527-2560 (2018). MSC: 92D25 92D40 60H10 60J60 PDF BibTeX XML Cite \textit{A. Hening} and \textit{D. H. Nguyen}, Bull. Math. Biol. 80, No. 10, 2527--2560 (2018; Zbl 1400.92435) Full Text: DOI arXiv
Boucekkine, Raouf; Martínez, Blanca; Ruiz-Tamarit, J. Ramon Optimal population growth as an endogenous discounting problem: the Ramsey case. (English) Zbl 1416.91317 Feichtinger, Gustav (ed.) et al., Control systems and mathematical methods in economics. Essays in honor of Vladimir M. Veliov. Cham: Springer. Lect. Notes Econ. Math. Syst. 687, 321-347 (2018). MSC: 91D20 91B62 49N90 91B15 PDF BibTeX XML Cite \textit{R. Boucekkine} et al., Lect. Notes Econ. Math. Syst. 687, 321--347 (2018; Zbl 1416.91317) Full Text: DOI
Song, Mingzhu; Xiang, Yayun Limiting behavior of the bisexual Galton-Watson branching process with immigration and population-size-dependent mating in random environments. (English) Zbl 1413.60082 Chin. J. Eng. Math. 35, No. 1, 110-122 (2018). MSC: 60J80 60K37 92D25 PDF BibTeX XML Cite \textit{M. Song} and \textit{Y. Xiang}, Chin. J. Eng. Math. 35, No. 1, 110--122 (2018; Zbl 1413.60082) Full Text: DOI
Koskela, Jere Multi-locus data distinguishes between population growth and multiple merger coalescents. (English) Zbl 1398.92207 Stat. Appl. Genet. Mol. Biol. 17, No. 3, Article ID 20170011, 21 p. (2018). MSC: 92D25 92D10 92D15 62P10 62M02 62F03 62G07 PDF BibTeX XML Cite \textit{J. Koskela}, Stat. Appl. Genet. Mol. Biol. 17, No. 3, Article ID 20170011, 21 p. (2018; Zbl 1398.92207) Full Text: DOI
Lin, Chiu-Ju; Wang, Lin; Wolkowicz, Gail S. K. An alternative formulation for a distributed delayed logistic equation. (English) Zbl 1396.92071 Bull. Math. Biol. 80, No. 7, 1713-1735 (2018). MSC: 92D25 34K20 34K60 PDF BibTeX XML Cite \textit{C.-J. Lin} et al., Bull. Math. Biol. 80, No. 7, 1713--1735 (2018; Zbl 1396.92071) Full Text: DOI