Dáger, René; Navarro, Víctor; Negreanu, Mihaela Uniform boundedness for a predator-prey system with chemotaxis and dormancy of predators. (English) Zbl 07333608 Q. Appl. Math. 79, No. 2, 367-382 (2021). MSC: 35K57 35K59 35B45 35B50 92D25 92D40 PDF BibTeX XML Cite \textit{R. Dáger} et al., Q. Appl. Math. 79, No. 2, 367--382 (2021; Zbl 07333608) Full Text: DOI
Djouda, Byliole S.; Ndjomatchoua, Frank T.; Moukam Kakmeni, F. M.; Tchawoua, Clément; Tonnang, Henri E. Z. Understanding biological control with entomopathogenic fungi – insights from a stochastic pest-pathogen model. (English) Zbl 07333334 Chaos 31, No. 2, 023126, 19 p. (2021). MSC: 92D45 60J28 92D25 PDF BibTeX XML Cite \textit{B. S. Djouda} et al., Chaos 31, No. 2, 023126, 19 p. (2021; Zbl 07333334) Full Text: DOI
Mukhopadhyay, Archan; Chakraborty, Sagar Replicator equations induced by microscopic processes in Nonoverlapping population playing bimatrix games. (English) Zbl 07333331 Chaos 31, No. 2, 023123, 11 p. (2021). MSC: 91A22 92D25 PDF BibTeX XML Cite \textit{A. Mukhopadhyay} and \textit{S. Chakraborty}, Chaos 31, No. 2, 023123, 11 p. (2021; Zbl 07333331) Full Text: DOI
Xu, Wen-Bing; Li, Wan-Tong; Ruan, Shigui Spatial propagation in nonlocal dispersal Fisher-KPP equations. (English) Zbl 07332862 J. Funct. Anal. 280, No. 10, Article ID 108957, 35 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{W.-B. Xu} et al., J. Funct. Anal. 280, No. 10, Article ID 108957, 35 p. (2021; Zbl 07332862) Full Text: DOI
Sarkar, Ikbal Hossein; Bhattacharyya, Joydeb; Pal, Samares Herbivore harvesting and alternative steady states in coral reefs. (English) Zbl 07332697 Appl. Math., Praha 66, No. 2, 233-268 (2021). MSC: 34A34 34D20 92D25 PDF BibTeX XML Cite \textit{I. H. Sarkar} et al., Appl. Math., Praha 66, No. 2, 233--268 (2021; Zbl 07332697) Full Text: DOI
Zhang, Jun; Su, Juan Bifurcations in a predator-prey model of Leslie-type with simplified Holling type IV functional response. (English) Zbl 07331770 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150054, 17 p. (2021). MSC: 92D25 37N25 37G10 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Su}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 4, Article ID 2150054, 17 p. (2021; Zbl 07331770) Full Text: DOI
Luo, Demou; Wang, Qiru Global dynamics of a Holling-II amensalism system with nonlinear growth rate and Allee effect on the first species. (English) Zbl 07331762 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150050, 26 p. (2021). MSC: 92D25 34C23 34D23 PDF BibTeX XML Cite \textit{D. Luo} and \textit{Q. Wang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150050, 26 p. (2021; Zbl 07331762) Full Text: DOI
Shaikh, Absos Ali; Das, Harekrishna; Ali, Nijamuddin Complex dynamics of an eco-epidemic system with disease in prey species. (English) Zbl 07331758 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150046, 16 p. (2021). MSC: 92D25 92D30 92D40 34D23 34C23 PDF BibTeX XML Cite \textit{A. A. Shaikh} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150046, 16 p. (2021; Zbl 07331758) Full Text: DOI
Chen, Meijun; Cao, Huaihuo; Fu, Shengmao Stationary patterns of a predator-prey model with prey-stage structure and prey-taxis. (English) Zbl 07331750 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150038, 18 p. (2021). MSC: 92D25 35Q92 PDF BibTeX XML Cite \textit{M. Chen} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150038, 18 p. (2021; Zbl 07331750) Full Text: DOI
Wu, Ranchao; Zhang, Chuanying; Feng, Zhaosheng Hopf bifurcation in a delayed single species network system. (English) Zbl 07331744 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2130008, 14 p. (2021). MSC: 35B32 35B35 35R10 39A12 35K57 37L10 92D25 PDF BibTeX XML Cite \textit{R. Wu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2130008, 14 p. (2021; Zbl 07331744) Full Text: DOI
Izuhara, Hirofumi; Monobe, Harunori; Wu, Chang-Hong The formation of spreading front: the singular limit of three-component reaction-diffusion models. (English) Zbl 07331659 J. Math. Biol. 82, No. 5, Paper No. 38, 33 p. (2021). MSC: 35Q92 35K57 35K45 92D25 PDF BibTeX XML Cite \textit{H. Izuhara} et al., J. Math. Biol. 82, No. 5, Paper No. 38, 33 p. (2021; Zbl 07331659) Full Text: DOI
Bouin, Emeric; Legendre, Guillaume; Lou, Yuan; Slover, Nichole Evolution of anisotropic diffusion in two-dimensional heterogeneous environments. (English) Zbl 07331657 J. Math. Biol. 82, No. 5, Paper No. 36, 34 p. (2021). MSC: 35Q92 35K57 92D15 92D25 PDF BibTeX XML Cite \textit{E. Bouin} et al., J. Math. Biol. 82, No. 5, Paper No. 36, 34 p. (2021; Zbl 07331657) Full Text: DOI
Skvortsova, M. A.; Yskak, T. Asymptotic behavior of solutions in one predator-prey model with delay. (English. Russian original) Zbl 07331439 Sib. Math. J. 62, No. 2, 324-336 (2021); translation from Sib. Mat. Zh. 62, No. 2, 402-416 (2021). MSC: 34K60 92D25 34K20 34K25 PDF BibTeX XML Cite \textit{M. A. Skvortsova} and \textit{T. Yskak}, Sib. Math. J. 62, No. 2, 324--336 (2021; Zbl 07331439); translation from Sib. Mat. Zh. 62, No. 2, 402--416 (2021) Full Text: DOI
Hu, Haijun; Deng, Litian; Huang, Jianhua Traveling wave of a nonlocal dispersal Lotka-Volterra cooperation model under shifting habitat. (English) Zbl 07330919 J. Math. Anal. Appl. 500, No. 1, Article ID 125100, 13 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{H. Hu} et al., J. Math. Anal. Appl. 500, No. 1, Article ID 125100, 13 p. (2021; Zbl 07330919) Full Text: DOI
Jiang, Jifa; Liang, Fengli; Wu, Wenxi; Huang, Shuo On the first Lyapunov coefficient formula of 3D Lotka-Volterra equations with applications to multiplicity of limit cycles. (On the first Liapunov coefficient formula of 3D Lotka-Volterra equations with applications to multiplicity of limit cycles.) (English) Zbl 07330800 J. Differ. Equations 284, 183-218 (2021). MSC: 92D25 37G15 PDF BibTeX XML Cite \textit{J. Jiang} et al., J. Differ. Equations 284, 183--218 (2021; Zbl 07330800) Full Text: DOI
Shu, Hongying; Fan, Guihong; Zhu, Huaiping Global Hopf bifurcation and dynamics of a stage-structured model with delays for tick population. (English) Zbl 07330793 J. Differ. Equations 284, 1-22 (2021). Reviewer: Albert Luo (Edwardsville) MSC: 34K60 34K18 34K13 92D25 PDF BibTeX XML Cite \textit{H. Shu} et al., J. Differ. Equations 284, 1--22 (2021; Zbl 07330793) Full Text: DOI
Oz, Yaron; Rubinstein, Ittai; Safra, Muli Heterogeneity and Superspreading effect on herd immunity. (English) Zbl 07330678 J. Stat. Mech. Theory Exp. 2021, No. 3, Article ID 033405, 20 p. (2021). MSC: 82 PDF BibTeX XML Cite \textit{Y. Oz} et al., J. Stat. Mech. Theory Exp. 2021, No. 3, Article ID 033405, 20 p. (2021; Zbl 07330678) Full Text: DOI
Goncalves, B.; Huillet, T. A generating function approach to Markov chains undergoing binomial catastrophes. (English) Zbl 07330675 J. Stat. Mech. Theory Exp. 2021, No. 3, Article ID 033402, 31 p. (2021). MSC: 82 PDF BibTeX XML Cite \textit{B. Goncalves} and \textit{T. Huillet}, J. Stat. Mech. Theory Exp. 2021, No. 3, Article ID 033402, 31 p. (2021; Zbl 07330675) Full Text: DOI
Keya, Kamrun Nahar; Kamrujjaman, Md.; Islam, Mohammad Shafiqul The influence of density in population dynamics with strong and weak allee effect. (English) Zbl 07330590 J. Egypt. Math. Soc. 29, Paper No. 4, 26 p. (2021). MSC: 92D25 35K57 37N25 PDF BibTeX XML Cite \textit{K. N. Keya} et al., J. Egypt. Math. Soc. 29, Paper No. 4, 26 p. (2021; Zbl 07330590) Full Text: DOI
Krapivsky, P. L. Infection process near criticality: influence of the initial condition. (English) Zbl 07330566 J. Stat. Mech. Theory Exp. 2021, No. 1, Article ID 013501, 27 p. (2021). MSC: 82 PDF BibTeX XML Cite \textit{P. L. Krapivsky}, J. Stat. Mech. Theory Exp. 2021, No. 1, Article ID 013501, 27 p. (2021; Zbl 07330566) Full Text: DOI
Zhang, Qian; Zhang, Guo-Bao Front-like entire solutions for a Lotka-Volterra weak competition system with nonlocal dispersal. (English) Zbl 07329761 J. Dyn. Control Syst. 27, No. 1, 133-151 (2021). MSC: 35B08 35K57 35C07 35B40 35B51 92D25 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{G.-B. Zhang}, J. Dyn. Control Syst. 27, No. 1, 133--151 (2021; Zbl 07329761) Full Text: DOI
Chen, Xianyong; Jiang, Weihua; Ruan, Shigui Global dynamics and complex patterns in Lotka-Volterra systems: the effects of both local and nonlocal intraspecific and interspecific competitions. (English) Zbl 07329653 J. Math. Anal. Appl. 499, No. 1, Article ID 125015, 18 p. (2021). MSC: 92D25 35Q92 34D23 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Math. Anal. Appl. 499, No. 1, Article ID 125015, 18 p. (2021; Zbl 07329653) Full Text: DOI
Roux, Jean Dynamical systems and continuation methods. Applications in biology and population dynamics. (Systèmes dynamiques et méthodes de continuation. Applications en biologie et dynamique des populations.) (French) Zbl 07329318 Références Sciences. Paris: Ellipses (ISBN 978-2-340-04620-7). 456 p. (2021). MSC: 92-02 92D25 PDF BibTeX XML Cite \textit{J. Roux}, Systèmes dynamiques et méthodes de continuation. Applications en biologie et dynamique des populations. Paris: Ellipses (2021; Zbl 07329318)
Xu, Nuo; Delius, Gustav W.; Zhang, Lai; Thygesen, Uffe H.; Andersen, Ken H. Spatial drivers of instability in marine size-spectrum ecosystems. (English) Zbl 07328715 J. Theor. Biol. 517, Article ID 110631, 8 p. (2021). MSC: 92D40 92D25 PDF BibTeX XML Cite \textit{N. Xu} et al., J. Theor. Biol. 517, Article ID 110631, 8 p. (2021; Zbl 07328715) Full Text: DOI
Holden, Matthew H.; Lockyer, Jakeb Poacher-population dynamics when legal trade of naturally deceased organisms funds anti-poaching enforcement. (English) Zbl 07328712 J. Theor. Biol. 517, Article ID 110618, 10 p. (2021). MSC: 92D25 92D40 91B76 PDF BibTeX XML Cite \textit{M. H. Holden} and \textit{J. Lockyer}, J. Theor. Biol. 517, Article ID 110618, 10 p. (2021; Zbl 07328712) Full Text: DOI
Wei, Yingying; Song, Baojun; Yuan, Sanling Dynamics of a ratio-dependent population model for green sea turtle with age structure. (English) Zbl 07328708 J. Theor. Biol. 516, Article ID 110614, 12 p. (2021). MSC: 92D25 PDF BibTeX XML Cite \textit{Y. Wei} et al., J. Theor. Biol. 516, Article ID 110614, 12 p. (2021; Zbl 07328708) Full Text: DOI
Kye, Geunho; Machta, Jonathan; Abbott, Karen C.; Hastings, Alan; Huffmyer, William; Ji, Fang; Liebhold, Andrew M.; Blackwood, Julie C. Sharp boundary formation and invasion between spatially adjacent periodical cicada broods. (English) Zbl 07328701 J. Theor. Biol. 515, Article ID 110600, 13 p. (2021). MSC: 92D25 92D40 92B25 PDF BibTeX XML Cite \textit{G. Kye} et al., J. Theor. Biol. 515, Article ID 110600, 13 p. (2021; Zbl 07328701) Full Text: DOI
Schlomann, Brandon H. Corrigendum to “Stationary moments, diffusion limits, and extinction times for logistic growth with random catastrophes”. (English) Zbl 07328697 J. Theor. Biol. 514, Article ID 110595, 1 p. (2021). MSC: 92D25 92D40 60H10 PDF BibTeX XML Cite \textit{B. H. Schlomann}, J. Theor. Biol. 514, Article ID 110595, 1 p. (2021; Zbl 07328697) Full Text: DOI
Kroumi, Dhaker; Lessard, Sabin The effect of variability in payoffs on average abundance in two-player linear games under symmetric mutation. (English) Zbl 07328688 J. Theor. Biol. 513, Article ID 110569, 15 p. (2021). MSC: 92D25 91A22 91A05 91A80 PDF BibTeX XML Cite \textit{D. Kroumi} and \textit{S. Lessard}, J. Theor. Biol. 513, Article ID 110569, 15 p. (2021; Zbl 07328688) Full Text: DOI
McGahan, Ian; Powell, James; Spencer, Elizabeth 28 models later: model competition and the zombie apocalypse. (English) Zbl 07328511 Bull. Math. Biol. 83, No. 3, Paper No. 22, 33 p. (2021). MSC: 92D30 92D25 PDF BibTeX XML Cite \textit{I. McGahan} et al., Bull. Math. Biol. 83, No. 3, Paper No. 22, 33 p. (2021; Zbl 07328511) Full Text: DOI
Garnier, Jimmy; Lafontaine, Pierre Dispersal and good habitat quality promote neutral genetic diversity in metapopulations. (English) Zbl 07328509 Bull. Math. Biol. 83, No. 3, Paper No. 20, 51 p. (2021). MSC: 37N25 34D23 92D25 92D40 PDF BibTeX XML Cite \textit{J. Garnier} and \textit{P. Lafontaine}, Bull. Math. Biol. 83, No. 3, Paper No. 20, 51 p. (2021; Zbl 07328509) Full Text: DOI
Oteo-García, Gonzalo; Oteo, José-Angel A geometrical framework for \(f\)-statistics. (English) Zbl 07328503 Bull. Math. Biol. 83, No. 2, Paper No. 14, 22 p. (2021). MSC: 92D15 92D25 92B15 PDF BibTeX XML Cite \textit{G. Oteo-García} and \textit{J.-A. Oteo}, Bull. Math. Biol. 83, No. 2, Paper No. 14, 22 p. (2021; Zbl 07328503) Full Text: DOI
Ramaj, Tedi On the mathematical modelling of competitive invasive weed dynamics. (English) Zbl 07328502 Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021). MSC: 92D25 35C07 PDF BibTeX XML Cite \textit{T. Ramaj}, Bull. Math. Biol. 83, No. 2, Paper No. 13, 25 p. (2021; Zbl 07328502) Full Text: DOI
Coron, Camille; Costa, Manon; Laroche, Fabien; Leman, Hélène; Smadi, Charline Emergence of homogamy in a two-loci stochastic population model. (English) Zbl 07328138 ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 1, 469-508 (2021). MSC: 60J80 60J27 37N25 92D25 PDF BibTeX XML Cite \textit{C. Coron} et al., ALEA, Lat. Am. J. Probab. Math. Stat. 18, No. 1, 469--508 (2021; Zbl 07328138) Full Text: Link
Zhang, Xue; Sun, Bei; Lou, Yijun Dynamics of a periodic tick-borne disease model with co-feeding and multiple patches. (English) Zbl 07327692 J. Math. Biol. 82, No. 4, Paper No. 27, 28 p. (2021). MSC: 92D30 92D25 34D23 34C25 PDF BibTeX XML Cite \textit{X. Zhang} et al., J. Math. Biol. 82, No. 4, Paper No. 27, 28 p. (2021; Zbl 07327692) Full Text: DOI
Clément, Frédérique; Robin, Frédérique; Yvinec, Romain Stochastic nonlinear model for somatic cell population dynamics during ovarian follicle activation. (English) Zbl 07327677 J. Math. Biol. 82, No. 3, Paper No. 12, 53 p. (2021). MSC: 60J85 60J28 92D25 62M05 PDF BibTeX XML Cite \textit{F. Clément} et al., J. Math. Biol. 82, No. 3, Paper No. 12, 53 p. (2021; Zbl 07327677) Full Text: DOI
Dénes, Attila; Röst, Gergely Single species population dynamics in seasonal environment with short reproduction period. (English) Zbl 07327302 Commun. Pure Appl. Anal. 20, No. 2, 755-762 (2021). MSC: 34K60 34K20 34K21 92D25 PDF BibTeX XML Cite \textit{A. Dénes} and \textit{G. Röst}, Commun. Pure Appl. Anal. 20, No. 2, 755--762 (2021; Zbl 07327302) Full Text: DOI
Cantin, Guillaume; Aziz-Alaoui, M. A. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. (English) Zbl 07327297 Commun. Pure Appl. Anal. 20, No. 2, 623-650 (2021). MSC: 35B41 35K51 35K57 35K90 92D25 PDF BibTeX XML Cite \textit{G. Cantin} and \textit{M. A. Aziz-Alaoui}, Commun. Pure Appl. Anal. 20, No. 2, 623--650 (2021; Zbl 07327297) Full Text: DOI
Kang, Hao; Huo, Xi; Ruan, Shigui On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures. (English) Zbl 07326828 Ann. Mat. Pura Appl. (4) 200, No. 2, 403-452 (2021). MSC: 35L04 92D25 47A10 47D06 PDF BibTeX XML Cite \textit{H. Kang} et al., Ann. Mat. Pura Appl. (4) 200, No. 2, 403--452 (2021; Zbl 07326828) Full Text: DOI
Shivam, Saumya; Baldwin, Christopher L.; Barton, John; Kardar, Mehran; Sondhi, S. L. Studying viral populations with tools from quantum spin chains. (English) Zbl 07326632 J. Stat. Phys. 182, No. 2, Paper No. 38, 13 p. (2021). Reviewer: Fatima T. Adylova (Tashkent) MSC: 92D25 92D15 81T99 PDF BibTeX XML Cite \textit{S. Shivam} et al., J. Stat. Phys. 182, No. 2, Paper No. 38, 13 p. (2021; Zbl 07326632) Full Text: DOI
Wijaya, Karunia Putra; Páez Chávez, Joseph; Pochampalli, Rohit; Rockenfeller, Robert; Aldila, Dipo; Götz, Thomas; Soewono, Edy Food sharing and time budgeting in predator-prey interaction. (English) Zbl 07323689 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105757, 20 p. (2021). Reviewer: Fatima T. Adylova (Tashkent) MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{K. P. Wijaya} et al., Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105757, 20 p. (2021; Zbl 07323689) Full Text: DOI
Abernethy, Gavin M. Sequences of patch disturbance in a spatial eco-evolutionary model. (English) Zbl 07323682 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105746, 13 p. (2021). MSC: 92D40 92D15 92D25 PDF BibTeX XML Cite \textit{G. M. Abernethy}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105746, 13 p. (2021; Zbl 07323682) Full Text: DOI
Wang, Yujia; Fan, Dejun; Wei, Junjie Stability and bifurcation analysis in a predator-prey model with age structure and two delays. (English) Zbl 07321558 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 2, Article ID 2150024, 20 p. (2021). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92D25 35B32 35R07 PDF BibTeX XML Cite \textit{Y. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 2, Article ID 2150024, 20 p. (2021; Zbl 07321558) Full Text: DOI
Zhong, Shihong; Wang, Jinliang; Bao, Junhua; Li, You; Jiang, Nan Spatiotemporal complexity analysis for a space-time discrete generalized toxic-phytoplankton-zooplankton model with self-diffusion and cross-diffusion. (English) Zbl 07321537 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150006, 27 p. (2021). MSC: 37N25 39A60 92D25 92D40 PDF BibTeX XML Cite \textit{S. Zhong} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150006, 27 p. (2021; Zbl 07321537) Full Text: DOI
Wang, Shuo; Pei, Lijun Complex dynamics and periodic oscillation mechanism in two novel gene expression models with state-dependent delays. (English) Zbl 07321533 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150002, 24 p. (2021). MSC: 34K60 92D99 34K18 34K13 34K43 PDF BibTeX XML Cite \textit{S. Wang} and \textit{L. Pei}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 1, Article ID 2150002, 24 p. (2021; Zbl 07321533) Full Text: DOI
Lin, Genghong; Ji, Juping; Wang, Lin; Yu, Jianshe Multitype bistability and long transients in a delayed spruce budworm population model. (English) Zbl 07319895 J. Differ. Equations 283, 263-289 (2021). MSC: 34K60 34K18 34K20 34K21 34K13 92D25 PDF BibTeX XML Cite \textit{G. Lin} et al., J. Differ. Equations 283, 263--289 (2021; Zbl 07319895) Full Text: DOI
Lu, Min; Huang, Jicai Global analysis in Bazykin’s model with Holling II functional response and predator competition. (English) Zbl 07319428 J. Differ. Equations 280, 99-138 (2021). MSC: 34C60 34C23 34D05 92D25 34C05 PDF BibTeX XML Cite \textit{M. Lu} and \textit{J. Huang}, J. Differ. Equations 280, 99--138 (2021; Zbl 07319428) Full Text: DOI
Chen, Yu-Shuo; Giletti, Thomas; Guo, Jong-Shenq Persistence of preys in a diffusive three species predator-prey system with a pair of strong-weak competing preys. (English) Zbl 07319418 J. Differ. Equations 281, 341-378 (2021). MSC: 35K40 35K57 34B40 92D25 35K55 35B05 35B40 PDF BibTeX XML Cite \textit{Y.-S. Chen} et al., J. Differ. Equations 281, 341--378 (2021; Zbl 07319418) Full Text: DOI
Zhou, Peng; Tang, De; Xiao, Dongmei On Lotka-Volterra competitive parabolic systems: exclusion, coexistence and bistability. (English) Zbl 07319406 J. Differ. Equations 282, 596-625 (2021). MSC: 35K51 35P15 37C65 92D25 PDF BibTeX XML Cite \textit{P. Zhou} et al., J. Differ. Equations 282, 596--625 (2021; Zbl 07319406) Full Text: DOI
Nguyen, Nhu N.; Yin, George Stochastic Lotka-Volterra competitive reaction-diffusion systems perturbed by space-time white noise: modeling and analysis. (English) Zbl 07319395 J. Differ. Equations 282, 184-232 (2021). MSC: 60H15 60H30 60H40 92D15 92D25 92D40 35K57 PDF BibTeX XML Cite \textit{N. N. Nguyen} and \textit{G. Yin}, J. Differ. Equations 282, 184--232 (2021; Zbl 07319395) Full Text: DOI
Liu, Gege; Xu, Tianyuan; Yin, Jingxue Forced waves of reaction-diffusion model with density-dependent dispersal in shifting environments. (English) Zbl 07319393 J. Differ. Equations 282, 127-147 (2021). MSC: 35C07 35K65 35K15 35K57 92D25 PDF BibTeX XML Cite \textit{G. Liu} et al., J. Differ. Equations 282, 127--147 (2021; Zbl 07319393) Full Text: DOI
Fang, Jian; Peng, Rui; Zhao, Xiao-Qiang Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment. (English. French summary) Zbl 07319302 J. Math. Pures Appl. (9) 147, 1-28 (2021). MSC: 35C07 35B40 35K57 92D25 PDF BibTeX XML Cite \textit{J. Fang} et al., J. Math. Pures Appl. (9) 147, 1--28 (2021; Zbl 07319302) Full Text: DOI
Caraballo, Tomás; Colucci, Renato; López-de-la-Cruz, Javier; Rapaport, Alain Corrigendum to the paper: “A way to model stochastic perturbations in population dynamics models with bounded realizations”. (English) Zbl 07319174 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105681, 5 p. (2021). MSC: 92D25 34F05 34C60 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105681, 5 p. (2021; Zbl 07319174) Full Text: DOI
Mukherjee, N.; Volpert, V. Bifurcation scenario of Turing patterns in prey-predator model with nonlocal consumption in the prey dynamics. (English) Zbl 07319170 Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021). MSC: 35B32 35B36 35K51 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{N. Mukherjee} and \textit{V. Volpert}, Commun. Nonlinear Sci. Numer. Simul. 96, Article ID 105677, 12 p. (2021; Zbl 07319170) Full Text: DOI
Franco, Giuditta; Manca, Vincenzo; Andreolli, Marco; Lampis, Silvia Emergence of random selections in evolution of biological populations. (English) Zbl 07318713 Theor. Comput. Sci. 862, 130-143 (2021). MSC: 68Q PDF BibTeX XML Cite \textit{G. Franco} et al., Theor. Comput. Sci. 862, 130--143 (2021; Zbl 07318713) Full Text: DOI
Rodriguez Q., Leoncio; Zhao, Jia; Gordillo, Luis F. The effects of simple density-dependent prey diffusion and refuge in a predator-prey system. (English) Zbl 07318551 J. Math. Anal. Appl. 498, No. 2, Article ID 124983, 12 p. (2021). Reviewer: Fatima T. Adylova (Tashkent) MSC: 92D25 35Q92 PDF BibTeX XML Cite \textit{L. Rodriguez Q.} et al., J. Math. Anal. Appl. 498, No. 2, Article ID 124983, 12 p. (2021; Zbl 07318551) Full Text: DOI
Jornet, Marc Modeling of Allee effect in biofilm formation via the stochastic bistable Allen-Cahn partial differential equation. (English) Zbl 07316860 Stochastic Anal. Appl. 39, No. 1, 22-32 (2021). MSC: 35R60 60H15 65C20 92D25 PDF BibTeX XML Cite \textit{M. Jornet}, Stochastic Anal. Appl. 39, No. 1, 22--32 (2021; Zbl 07316860) Full Text: DOI
Yang, Zhanwen; Zuo, Tianqing; Chen, Zhijie Numerical analysis of linearly implicit Euler-Riemann method for nonlinear Gurtin-MacCamy model. (English) Zbl 07316841 Appl. Numer. Math. 163, 147-166 (2021). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 65M12 92D25 92D30 35Q92 PDF BibTeX XML Cite \textit{Z. Yang} et al., Appl. Numer. Math. 163, 147--166 (2021; Zbl 07316841) Full Text: DOI
Kaygermazov, A. A.; Shakov, Kh. K.; Kudaeva, F. Kh. McKendrick-Tornquist age-dependent population model. (English. Russian original) Zbl 07315945 J. Math. Sci., New York 253, No. 4, 511-519 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 54-61 (2018). Reviewer: Fatima T. Adylova (Tashkent) MSC: 92D25 35Q92 PDF BibTeX XML Cite \textit{A. A. Kaygermazov} et al., J. Math. Sci., New York 253, No. 4, 511--519 (2021; Zbl 07315945); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 154, 54--61 (2018) Full Text: DOI
Timoshin, Sergey A.; Aiki, Toyohiko Relaxation in population dynamics models with hysteresis. (English) Zbl 07315939 SIAM J. Control Optim. 59, No. 1, 693-708 (2021). MSC: 92D25 93C20 PDF BibTeX XML Cite \textit{S. A. Timoshin} and \textit{T. Aiki}, SIAM J. Control Optim. 59, No. 1, 693--708 (2021; Zbl 07315939) Full Text: DOI
Abbas, Syed; Dhama, Soniya; Pinto, Manuel; Sepúlveda, Daniel Pseudo compact almost automorphic solutions for a family of delayed population model of Nicholson type. (English) Zbl 07315388 J. Math. Anal. Appl. 495, No. 1, Article ID 124722, 22 p. (2021). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 34K60 92D25 34K14 43A60 PDF BibTeX XML Cite \textit{S. Abbas} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124722, 22 p. (2021; Zbl 07315388) Full Text: DOI
Traore, Amidou; Ainseba, Bedr’Eddine; Traore, Oumar On the existence of solution of a four-stage and age-structured population dynamics model. (English) Zbl 07315367 J. Math. Anal. Appl. 495, No. 1, Article ID 124699, 18 p. (2021). MSC: 35 92 PDF BibTeX XML Cite \textit{A. Traore} et al., J. Math. Anal. Appl. 495, No. 1, Article ID 124699, 18 p. (2021; Zbl 07315367) Full Text: DOI
Zhu, Linhe; Liu, Wenshan Spatial dynamics and optimization method for a network propagation model in a shifting environment. (English) Zbl 07314933 Discrete Contin. Dyn. Syst. 41, No. 4, 1843-1874 (2021). MSC: 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{L. Zhu} and \textit{W. Liu}, Discrete Contin. Dyn. Syst. 41, No. 4, 1843--1874 (2021; Zbl 07314933) Full Text: DOI
Li, Dan Global stability in a multi-dimensional predator-prey system with prey-taxis. (English) Zbl 07314928 Discrete Contin. Dyn. Syst. 41, No. 4, 1681-1705 (2021). MSC: 92D25 34D23 PDF BibTeX XML Cite \textit{D. Li}, Discrete Contin. Dyn. Syst. 41, No. 4, 1681--1705 (2021; Zbl 07314928) Full Text: DOI
Martinez, Patrick; Vancostenoble, Judith Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. (English) Zbl 07314578 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695-721 (2021). MSC: 92D25 92D40 35F20 35K57 35Q92 35R30 PDF BibTeX XML Cite \textit{P. Martinez} and \textit{J. Vancostenoble}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 695--721 (2021; Zbl 07314578) Full Text: DOI
Fellner, Klemens; Morgan, Jeff; Tang, Bao Quoc Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. (English) Zbl 07314575 Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635-651 (2021). MSC: 35K51 35K57 35K58 92D25 PDF BibTeX XML Cite \textit{K. Fellner} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 2, 635--651 (2021; Zbl 07314575) Full Text: DOI
Brasseur, Julien The role of the range of dispersal in a nonlocal Fisher-KPP equation: an asymptotic analysis. (English) Zbl 07312336 Commun. Contemp. Math. 23, No. 3, Article ID 2050032, 23 p. (2021). MSC: 35J60 92D25 PDF BibTeX XML Cite \textit{J. Brasseur}, Commun. Contemp. Math. 23, No. 3, Article ID 2050032, 23 p. (2021; Zbl 07312336) Full Text: DOI
Ducrot, Arnaud; Giletti, Thomas; Guo, Jong-Shenq; Shimojo, Masahiko Asymptotic spreading speeds for a predator-prey system with two predators and one prey. (English) Zbl 07312081 Nonlinearity 34, No. 2, 669-704 (2021). MSC: 35C07 35K45 35K57 92D25 PDF BibTeX XML Cite \textit{A. Ducrot} et al., Nonlinearity 34, No. 2, 669--704 (2021; Zbl 07312081) Full Text: DOI
Rebaza, Jorge On a model of COVID-19 dynamics. (English) Zbl 07311272 Electron Res. Arch. 29, No. 2, 2129-2140 (2021). Reviewer: Ran Zhang (Nanjing) MSC: 37N25 92D30 92D25 PDF BibTeX XML Cite \textit{J. Rebaza}, Electron Res. Arch. 29, No. 2, 2129--2140 (2021; Zbl 07311272) Full Text: DOI
Yan, Weifang Traveling waves in a stage-structured predator-prey model with Holling type functional response. (English) Zbl 07311103 Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407-434 (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{W. Yan}, Bull. Malays. Math. Sci. Soc. (2) 44, No. 1, 407--434 (2021; Zbl 07311103) Full Text: DOI
Mazari, Idriss; Ruiz-Balet, Domènec A fragmentation phenomenon for a nonenergetic optimal control problem: optimization of the total population size in logistic diffusive models. (English) Zbl 07310945 SIAM J. Appl. Math. 81, No. 1, 153-172 (2021). MSC: 35Q92 92D25 49J10 49Q10 92-08 PDF BibTeX XML Cite \textit{I. Mazari} and \textit{D. Ruiz-Balet}, SIAM J. Appl. Math. 81, No. 1, 153--172 (2021; Zbl 07310945) Full Text: DOI
Bessonov, Nikolai; Bocharov, Gennady; Meyerhans, Andreas; Popov, Vladimir; Volpert, Vitaly Existence and dynamics of strains in a nonlocal reaction-diffusion model of viral evolution. (English) Zbl 07310943 SIAM J. Appl. Math. 81, No. 1, 107-128 (2021). MSC: 35Q92 35K57 35R09 92D25 92C15 92C50 PDF BibTeX XML Cite \textit{N. Bessonov} et al., SIAM J. Appl. Math. 81, No. 1, 107--128 (2021; Zbl 07310943) Full Text: DOI
Benito, J. J.; García, A.; Gavete, L.; Negreanu, M.; Ureña, F.; Vargas, A. M. Convergence and numerical simulations of prey-predator interactions via a meshless method. (English) Zbl 07310821 Appl. Numer. Math. 161, 333-347 (2021). MSC: 65M06 65N06 35B09 35B40 92D25 92C17 35Q92 PDF BibTeX XML Cite \textit{J. J. Benito} et al., Appl. Numer. Math. 161, 333--347 (2021; Zbl 07310821) Full Text: DOI
Bouakkaz, Ahlème; Khemis, Rabah Positive periodic solutions for revisited Nicholson’s blowflies equation with iterative harvesting term. (English) Zbl 07310679 J. Math. Anal. Appl. 494, No. 2, Article ID 124663, 15 p. (2021). MSC: 34K60 92D25 34K13 34K45 47N20 PDF BibTeX XML Cite \textit{A. Bouakkaz} and \textit{R. Khemis}, J. Math. Anal. Appl. 494, No. 2, Article ID 124663, 15 p. (2021; Zbl 07310679) Full Text: DOI
Brewer, Tom R.; Bonsall, Michael B. Combining refuges with transgenic insect releases for the management of an insect pest with non-recessive resistance to Bt crops in agricultural landscapes. (English) Zbl 07309214 J. Theor. Biol. 509, Article ID 110514, 12 p. (2021). MSC: 92D45 PDF BibTeX XML Cite \textit{T. R. Brewer} and \textit{M. B. Bonsall}, J. Theor. Biol. 509, Article ID 110514, 12 p. (2021; Zbl 07309214) Full Text: DOI
Oda, Takafumi; Kim, Kwang Su; Fujita, Yasuhisa; Ito, Yusuke; Miura, Tomoyuki; Iwami, Shingo Quantifying antiviral effects against simian/human immunodeficiency virus induced by host immune response. (English) Zbl 07309200 J. Theor. Biol. 509, Article ID 110493, 11 p. (2021). MSC: 92C32 92D30 PDF BibTeX XML Cite \textit{T. Oda} et al., J. Theor. Biol. 509, Article ID 110493, 11 p. (2021; Zbl 07309200) Full Text: DOI
Ji, Chunyan; Yang, Xue; Li, Yong Permanence, extinction and periodicity to a stochastic competitive model with infinite distributed delays. (English) Zbl 07307360 J. Dyn. Differ. Equations 33, No. 1, 135-176 (2021). MSC: 34K60 34K50 92D25 34K25 34K13 PDF BibTeX XML Cite \textit{C. Ji} et al., J. Dyn. Differ. Equations 33, No. 1, 135--176 (2021; Zbl 07307360) Full Text: DOI
Liu, Qun; Chen, Qingmei A note on the stationary distribution of a three-species food web stochastic model with generalist predator. (English) Zbl 07307183 Appl. Math. Lett. 114, Article ID 106929, 7 p. (2021). MSC: 92D40 92D25 34B18 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{Q. Chen}, Appl. Math. Lett. 114, Article ID 106929, 7 p. (2021; Zbl 07307183) Full Text: DOI
Yan, Xiang-Ping; Zhang, Cun-Hua Global stability of a delayed diffusive predator-prey model with prey harvesting of Michaelis-Menten type. (English) Zbl 07307174 Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021). MSC: 35Q92 92D25 35B35 35B40 35R07 PDF BibTeX XML Cite \textit{X.-P. Yan} and \textit{C.-H. Zhang}, Appl. Math. Lett. 114, Article ID 106904, 7 p. (2021; Zbl 07307174) Full Text: DOI
Yang, Jiaqi; Mei, Ming; Wang, Yang Novel convergence to steady-state for Nicholson’s blowflies equation with Dirichlet boundary. (English) Zbl 07307170 Appl. Math. Lett. 114, Article ID 106895, 8 p. (2021). MSC: 35Q92 92D25 35R07 PDF BibTeX XML Cite \textit{J. Yang} et al., Appl. Math. Lett. 114, Article ID 106895, 8 p. (2021; Zbl 07307170) Full Text: DOI
Wu, Chin-Chin On the stable tail limit of traveling wave for a predator-prey system with nonlocal dispersal. (English) Zbl 07307153 Appl. Math. Lett. 113, Article ID 106855, 6 p. (2021). MSC: 35C07 35K57 92D25 PDF BibTeX XML Cite \textit{C.-C. Wu}, Appl. Math. Lett. 113, Article ID 106855, 6 p. (2021; Zbl 07307153) Full Text: DOI
Li, Shimin; Wang, Cheng; Wu, Kuilin Relaxation oscillations of a slow-fast predator-prey model with a piecewise smooth functional response. (English) Zbl 07307152 Appl. Math. Lett. 113, Article ID 106852, 7 p. (2021). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{S. Li} et al., Appl. Math. Lett. 113, Article ID 106852, 7 p. (2021; Zbl 07307152) Full Text: DOI
Qi, Haokun; Meng, Xinzhu Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect. (English) Zbl 07307150 Appl. Math. Lett. 113, Article ID 106846, 8 p. (2021). MSC: 92D25 60H30 PDF BibTeX XML Cite \textit{H. Qi} and \textit{X. Meng}, Appl. Math. Lett. 113, Article ID 106846, 8 p. (2021; Zbl 07307150) Full Text: DOI
Kumar, Vipin; Djemai, Mohamed; Defoort, Michael; Malik, Muslim Finite-time stability and stabilization results for switched impulsive dynamical systems on time scales. (English) Zbl 1455.93177 J. Franklin Inst. 358, No. 1, 674-698 (2021). MSC: 93D40 93D15 93C30 93C27 92D25 PDF BibTeX XML Cite \textit{V. Kumar} et al., J. Franklin Inst. 358, No. 1, 674--698 (2021; Zbl 1455.93177) Full Text: DOI
Coronel, Aníbal; Friz, Luis; Hess, Ian; Zegarra, María On the existence and uniqueness of an inverse problem in epidemiology. (English) Zbl 1456.49039 Appl. Anal. 100, No. 3, 513-526 (2021). MSC: 49S05 49N45 49K20 92D30 92D25 35K57 PDF BibTeX XML Cite \textit{A. Coronel} et al., Appl. Anal. 100, No. 3, 513--526 (2021; Zbl 1456.49039) Full Text: DOI
Breda, Dimitri; Florian, Francesco; Ripoll, Jordi; Vermiglio, Rossana Efficient numerical computation of the basic reproduction number for structured populations. (English) Zbl 07305061 J. Comput. Appl. Math. 384, Article ID 113165, 15 p. (2021). MSC: 65Pxx 65L03 65L15 65M70 65J10 92D25 92D30 92D40 47D06 47A75 PDF BibTeX XML Cite \textit{D. Breda} et al., J. Comput. Appl. Math. 384, Article ID 113165, 15 p. (2021; Zbl 07305061) Full Text: DOI
Kumar Upadhyay, Ranjit; Iyengar, Satteluri R. K. Spatial dynamics and pattern formation in biological populations. (English) Zbl 07304732 Boca Raton, FL: CRC Press (ISBN 978-0-367-55550-4/hbk). 448 p. (2021). MSC: 92-02 92D25 92C15 92D40 92D30 92C20 35Q92 PDF BibTeX XML Cite \textit{R. Kumar Upadhyay} and \textit{S. R. K. Iyengar}, Spatial dynamics and pattern formation in biological populations. Boca Raton, FL: CRC Press (2021; Zbl 07304732)
Kang, Hao; Ruan, Shigui Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions. (English) Zbl 1456.35083 J. Differ. Equations 278, 430-462 (2021). MSC: 35F31 35R09 92D25 35P20 45K05 45A05 45G10 47D06 PDF BibTeX XML Cite \textit{H. Kang} and \textit{S. Ruan}, J. Differ. Equations 278, 430--462 (2021; Zbl 1456.35083) Full Text: DOI
Wang, Zhi-An; Xu, Jiao On the Lotka-Volterra competition system with dynamical resources and density-dependent diffusion. (English) Zbl 1456.35107 J. Math. Biol. 82, No. 1-2, Paper No. 7, 37 p. (2021). MSC: 35K51 35B40 35B44 35K57 92D25 PDF BibTeX XML Cite \textit{Z.-A. Wang} and \textit{J. Xu}, J. Math. Biol. 82, No. 1--2, Paper No. 7, 37 p. (2021; Zbl 1456.35107) Full Text: DOI
Favero, Martina; Hult, Henrik; Koski, Timo A dual process for the coupled Wright-Fisher diffusion. (English) Zbl 07303131 J. Math. Biol. 82, No. 1-2, Paper No. 6, 29 p. (2021). MSC: 60J70 92D25 60J60 92D10 PDF BibTeX XML Cite \textit{M. Favero} et al., J. Math. Biol. 82, No. 1--2, Paper No. 6, 29 p. (2021; Zbl 07303131) Full Text: DOI
Jiménez López, Víctor; Liz, Eduardo Destabilization and chaos induced by harvesting: insights from one-dimensional discrete-time models. (English) Zbl 07303128 J. Math. Biol. 82, No. 1-2, Paper No. 3, 28 p. (2021). MSC: 92D25 91B76 37N25 39A30 39A33 PDF BibTeX XML Cite \textit{V. Jiménez López} and \textit{E. Liz}, J. Math. Biol. 82, No. 1--2, Paper No. 3, 28 p. (2021; Zbl 07303128) Full Text: DOI
Nagahara, Kentaro; Lou, Yuan; Yanagida, Eiji Maximizing the total population with logistic growth in a patchy environment. (English) Zbl 1456.49041 J. Math. Biol. 82, No. 1-2, Paper No. 2, 50 p. (2021). MSC: 49S05 49J15 92D25 39A12 PDF BibTeX XML Cite \textit{K. Nagahara} et al., J. Math. Biol. 82, No. 1--2, Paper No. 2, 50 p. (2021; Zbl 1456.49041) Full Text: DOI
Wu, Yi; Xia, Yonghui; Deng, Shengfu Existence and stability of pseudo almost periodic solutions for a delayed multispecies logarithmic population model with feedback control. (English) Zbl 07302069 Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 6, 22 p. (2021). MSC: 34K60 34K35 34K14 34K20 34K25 92D25 47N20 PDF BibTeX XML Cite \textit{Y. Wu} et al., Qual. Theory Dyn. Syst. 20, No. 1, Paper No. 6, 22 p. (2021; Zbl 07302069) Full Text: DOI
Nadjah, Kerioui; Salah, Abdelouahab Mohammed Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. (English) Zbl 07300775 Electron Res. Arch. 29, No. 1, 1641-1660 (2021). MSC: 34C60 92D25 34A09 34C05 34D20 34C23 34D05 PDF BibTeX XML Cite \textit{K. Nadjah} and \textit{A. M. Salah}, Electron Res. Arch. 29, No. 1, 1641--1660 (2021; Zbl 07300775) Full Text: DOI
Negreanu, M.; Vargas, A. M. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. (English) Zbl 1456.35036 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021). MSC: 35B40 35K51 35K59 92C17 92D25 35B10 65M06 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{A. M. Vargas}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021; Zbl 1456.35036) Full Text: DOI
Liu, Zhihua; Magal, Pierre Bogdanov-Takens bifurcation in a predator-prey model with age structure. (English) Zbl 07298441 Z. Angew. Math. Phys. 72, No. 1, Paper No. 4, 24 p. (2021). Reviewer: George Karakostas (Ioannina) MSC: 34K60 34K18 34K16 35K90 37G10 92D25 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{P. Magal}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 4, 24 p. (2021; Zbl 07298441) Full Text: DOI
Dong, Fang-Di; Li, Bingtuan; Li, Wan-Tong Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat. (English) Zbl 1455.92120 J. Differ. Equations 276, 433-459 (2021). MSC: 92D25 92D40 35C07 PDF BibTeX XML Cite \textit{F.-D. Dong} et al., J. Differ. Equations 276, 433--459 (2021; Zbl 1455.92120) Full Text: DOI
Jamilov, Uygun; Reinfelds, Andrejs A family of Volterra cubic stochastic operators. (English) Zbl 07297370 J. Convex Anal. 28, No. 1, 19-30 (2021). MSC: 37N25 37H10 37A25 92D25 60H25 PDF BibTeX XML Cite \textit{U. Jamilov} and \textit{A. Reinfelds}, J. Convex Anal. 28, No. 1, 19--30 (2021; Zbl 07297370) Full Text: Link
Liu, Xiaolin; Ouyang, Zigen; Huang, Zhe; Ou, Chunhua Spreading speed of the periodic Lotka-Volterra competition model. (English) Zbl 07291348 J. Differ. Equations 275, 533-553 (2021). Reviewer: Guobao Zhang (Lanzhou) MSC: 35K57 35K40 92D25 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Differ. Equations 275, 533--553 (2021; Zbl 07291348) Full Text: DOI
Jafelice, Rosana Sueli da Motta; Amarillo Bertone, Ana Maria Biological models via interval type-2 fuzzy sets. (English) Zbl 1454.92003 SpringerBriefs in Mathematics. Cham: Springer (ISBN 978-3-030-64529-8/pbk; 978-3-030-64530-4/ebook). xviii, 136 p. (2021). MSC: 92-10 92C60 92D25 35Q92 35R13 PDF BibTeX XML Cite \textit{R. S. da M. Jafelice} and \textit{A. M. Amarillo Bertone}, Biological models via interval type-2 fuzzy sets. Cham: Springer (2021; Zbl 1454.92003) Full Text: DOI