×

Impacts of the 4.5 and 8.5 RCP global climate scenarios on urban meteorology and air quality: application to Madrid, Antwerp, Milan, Helsinki and London. (English) Zbl 1325.86009

Summary: Climate change is expected to influence urban living conditions and challenge the ability of cities to adapt and mitigate climate change. This paper describes a new modelling system for climate change impact assessments on urban climate and air quality with feasible computational costs (the expected CPU time is too large for actual supercomputer platforms). The system takes the outputs from a global climate model, which are injected into a dynamical regional climate model (WRF-Chem) with the nested capability activated, with 25 km spatial resolution. In addition, the system uses a diagnostic meteorological model (CALMET) to produce urban detailed information (with 200 m spatial resolution) using this downscaling procedure. At the city level, a simplified chemical-transport model (based on CMAQ and using linear chemistry) is used to map the spatial distribution of the pollutants. The system is applied to five European cities: Madrid, Antwerp, Milan, Helsinki and London (Kensington-Chelsea area). The modelling system was used to simulate the climate and air quality for present year (2011) and future years (2030, 2050 and 2100) using 2011 emissions as control run, because we want to investigate the effects on the global climate on the actual (2011) cities. Effects on temperature, precipitation, and ozone are also considered. We compare the climate and air concentrations in future years 2030, 2050 and 2100 with the control year (2011). Comparison of simulations for present situation (using NNRP reanalysis 2011 data sets) shows acceptable agreement with measurements which give us strong confidence on the results for the RCP IPCC climate future simulations for 4.5 and 8.5 scenarios.

MSC:

86A10 Meteorology and atmospheric physics
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)

Software:

WRF-Chem
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Martine, G.; Marshall, A., State of world population 2007: Unleashing the potential of urban growth, Report (2007), U. N. Popul Fund: U. N. Popul Fund NewYork. Masson
[2] Mickley, L. J.; Jacob, D. J.; Field, B. D.; Rind, D., Effects of future climate change on regional air pollution episodes in the United States, Geophys. Res. Lett., 31, L24103 (2004)
[3] Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; Ellingsen, K.; van Noije, T. P.C.; Wild, O.; Zeng, G.; Amann, M.; Atherton, C. S.; Bell, N.; Bergmann, D. J.; Bey, I.; Butler, T.; Cofala, J.; Collins, W. J.; Derwent, R. G.; Doherty, R. M.; Drevet, J.; Eskes, H. J.; Fiore, A. M.; Gauss, M.; Hauglustaine, D. A.; Horowitz, L. W.; Isaksen, I. S.A.; Krol, M. C.; Lamarque, J. F.; Lawrence, M. G.; Montanaro, V.; Muller, J. F.; Pitari, G.; Prather, M. J.; Pyle, J. A.; Rast, S.; Rodriguez, J. M.; Sanderson, M. G.; Savage, N. H.; Shindell, D. T.; Strahan, S. E.; Sudo, K.; Szopa, S., Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res.-Atmos., 111, D08301 (2006)
[4] Weaver, C. P.; Liang, X. Z.; Zhu, J.; Adams, P. J.; Amar, P.; Avise, J.; Caughey, M.; Chen, J.; Cohen, R. C.; Cooter, E.; Dawson, J. P.; Gilliam, R.; Gilliland, A.; Goldstein, A. H.; Grambsch, A.; Grano, D.; Guenther, A.; Gustafson, W. I.; Harley, R. A.; He, S.; Hemming, B.; Hogrefe, C.; Huang, H. C.; Hunt, S. W.; Jacob, D. J.; Kinney, P. L.; Kunkel, K.; Lamarque, J. F.; Lamb, B.; Larkin, N. K.; Leung, L. R.; Liao, K. J.; Lin, J. T.; Lynn, B. H.; Manomaiphiboon, K.; Mass, C.; McKenzie, D.; Mickley, L. J.; O’Neill, S. M.; Nolte, C.; Pandis, S. N.; Racherla, P. N.; Rosenzweig, C.; Russell, A. G.; Salathe, E.; Steiner, A. L.; Tagaris, E.; Tao, Z.; Tonse, S.; Wiedinmyer, C.; Williams, A.; Winner, D. A.; Woo, J. H.; Wu, S.; Wuebbles, D. J., A preliminary synthesis of modeled climate change impacts on US regional ozone concentrations, Bull. Am. Meteorol. Soc., 90, 1843-1863 (2009)
[5] Rosenzweig, C.; Solecki, W.; Hammer, S. A.; Mehrotra, S., Cities lead the way in climate-change action, Nature, 467, 909-911 (2010)
[6] Cooney, C. M., Downscaling climate models: sharpening the focus on local-level changes, Environ. Health Perspect., 120, 1, A24-A28 (2012)
[7] Giorgi, F.; Mearns, L., Introduction to special section: Regional climate modelling revisited, J. Geophys. Res., 104, D6, 6335-6352 (1999)
[8] Solecki, W. D.; Oliveri, C., Downscaling climate change scenarios in an urban land use change model, J. Environ. Manag., 72, 1-2, 105-115 (2004)
[9] Semenov, M. A.; Barrow, E. M., Use of a stochastic weather generator in the development of climate change scenarios, Clim. Change, 35, 4, 397-414 (1997)
[10] Kjellström, E.; Nikulin, G.; Hansson, U.; Strandberg, G.; Ullerstig, A., 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations, Tellus A, 63, 1, 24-40 (2011)
[11] Langner, J.; Bergström, R.; Foltescu, V., Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe, Atmos. Environ., 39, 6, 1129-1141 (2005)
[12] Andersson, C.; Engardt, M., European ozone in a future climate—the importance of changes in dry deposition and isoprene emissions, J. Geophys. Res., 115, 13 (2010), Article ID D02303
[13] Jacob, D. J.; Winner, D. A., Effect of climate change on air quality, Atmos. Environ., 43, 1, 51-63 (2009)
[14] Mahmud, A.; Hixson, M.; Kleeman, M. J., Quantifying population exposure to airborne particulate matter during extreme events in California due to climage change, Atmos. Chem. Phys. Discuss., 12, 5881-5901 (2012)
[16] Rao, S.; Riahi, K., The role of non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century. Multigas mitigation and climate policy, Energy J., 3, Special Issue, 177-200 (2006)
[17] Smith, Ronald J.; Stouffer, Allison M.; Thomson, John P.; Weyant1; Wilbanks, Thomas J., The next generation of scenarios for climate change research and assessment, Nature, 463, 747-756 (2010)
[19] Wise, M. A.; Calvin, K. V.; Thomson, A. M.; Clarke, L. E.; Bond-Lamberty, B.; Sands, R. D.; Smith, S. J.; Janetos, A. C.; Edmonds, J. A., Implications of limiting CO2 concentrations for land use and energy, Science, 324, 1183-1186 (2009)
[20] Grell, G. A.; Peckham, S. E.; Schmitz, R.; McKeen, S. A.; Frost, G.; Skamarock, W. C.; Eder, B., Fully coupled ’online’ chemistry in the WRF model, Atmos. Environ., 39, 6957-6976 (2005)
[21] Bukovsky, M. S.; Karoly, D. J., Precipitation simulations using WRF as a nested regional climate model, J. Appl. Meteorol. Climatol., 48, 2152-2159 (2009)
[22] Caldwell, P. M.; Chin, H.-N. S.; Bader, D. C.; Bala, G., Evaluation of a WRF based dynamical downscaling simulation over California, Clim. Change, 95, 499-521 (2009)
[23] Flaounas, E.; Bastin, S.; Janicot, S., Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF, Clim. Dyn., 36, 1083-1105 (2011)
[24] Leung, L. R.; Qian, Y., Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model, Geophys. Res. Lett., 36, L03820 (2009)
[25] Liang, X. Z.; Choi, H. I.; Kunkel, K. E.; Dai, Y.; Joseph, E.; Wang, J. X.L., Surface boundary conditions for mesoscale regional climate models, Earth Interact., 9 (2005)
[26] J. C.F., Lo; Yang, Z. L.; Pielke, R. A., Assessment of three dynamical climate downscaling methods using the weather research and forecasting (WRF) model, J. Geophys. Res., 113, D09112 (2008)
[27] Zhang, Y.; Dulière, V.; Mote, P.; Salathé, E. P., Evaluation of WRF and HadRM mesoscale climate simulations over the United States Pacific Northwest, J. Clim., 22, 5511-5526 (2009)
[28] (Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007), Cambridge University Press: Cambridge University Press Cambridge), 996
[29] Morrison, H.; Thompson, G.; Tatarskii, V., Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one and two-moment schemes, Mon. Weather Rev., 137, 991-1006 (2009)
[30] Hong, S. Y.; Pan, H. L., Nonlocal boundary layer vertical diffusion in a medium-range forecast model, Mon. Weather Rev., 124, 10, 2322-2339 (1996)
[31] Brunner, D.; Eder, B.; Jorba, O.; Savage, N.; Makar, P.; Giordano, L.; Badia, A.; Balzarini, A.; Baro, R. R.; Chemel, C.; Forkel, R.; Jimenez-Guerrero, P.; Hirtl, M.; Hodzic, A.; Honzak, L.; Knote, C.; Kuenen, J. J.P.; Makar, P. A.; Manders-Groot, A.; Davis, L.; Perez, J. L.; Pirovano, G.; San Jose, R.; Savage, N.; Schroder, W.; Sokhi, R. S.; Syrakov, D.; Torian, A.; Werhahn, K.; Wolke, R.; Yahya, K.; Zabkar, R.; Zhang, Y.; Zhang, J.; Hogrefe, C.; Galmarini, S., Evaluation of the meteorological performance of coupled chemistry-meteorology models in phase 2 of the air quality model evaluation international initiative, Atmos. Environ. (2014)
[32] Forkel, R.; Balzarini, A.; Baró, R.; Bianconi, R.; Curci, G.; Jiménez-Guerrero, P.; Hirtl, M.; Honzak, L.; Lorenz, C.; Im, U.; Pérez, J.; Priovano, G.; San José, R.; Tuccella, P.; Werhahn, J.; Zabkar, R., Analysis of the WRF-Chem contribution to AQMEII phase 2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions, Atmos. Environ. (2014)
[33] Pouliot, G.; Pierce, T.; Denier van der Gon, H.; Schaap, M.; Moran, M.; Nopmongcol, U., Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project, Atmos. Environ., 53, 4-14 (2012)
[34] Shaw, W. J.; Allwine, K.; Fritz, B. G.; Rutz, F. C.; Rishel, J. P.; Chapman, E. G., An evaluation of the wind erosion module in DUSTRAN, Atmos. Environ., 42, 1907-1921 (2008)
[37] San Jose, R.; Perez, Juan L.; Morant, Jose L.; Gonzalez, Rosa M., European operational air quality forecasting system by using MM5-CMAQ-EMIMO tool, Simul. Modell. Pract. Theory, 16, 10, 1534-1540 (2008), The Analysis of Complex Systems
[38] Cressman, G. P., An operational objective analysis system, Mon. Weather Rev., 87, 367-374 (1959)
[39] Langner, J.; Engardt, M.; Baklanov, A., A multi-model study of impacts of climate change on surface ozone in Europe, Atmos. Chem. Phys. Discuss., 12, 4901-4939 (2012)
[40] Andersson, C.; Engardt, M., European ozone in a future climate—The importance of changes in dry deposition and isoprene emissions, J. Geophys. Res., 115, D02303 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.