×

Load capacity ratios for structures. (English) Zbl 1231.74391

Summary: For a given structure made of a perfectly plastic material with a yield stress \(s_{Y}\), we consider the load capacity ratio of the structure: the largest positive number \(C\), depending only on the geometry of the structure, which satisfies the following property. For any loading distribution \(f\) on the structure whose maximum is \(f_{\max}\), the structure will not undergo plastic collapse as long as \(f_{max}\leqslant s_{Y}C\), independently of the distribution of the load. The paper presents the mathematical aspects, related mechanical notions, algorithms and examples corresponding to load capacity ratios of structures.

MSC:

74R20 Anelastic fracture and damage
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74P10 Optimization of other properties in solid mechanics

Software:

SeDuMi; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Prager, W., An Introduction to Plasticity (1959), Addison-Wesley · Zbl 0089.42004
[2] Prager, W., Fundamentals of engineering plasticity, (Cohn, M. Z.; Maier, G., Engineering Plasticity by Mathematical Programming (1977), Proceedings of the NATO Advanced Study Institute: Proceedings of the NATO Advanced Study Institute Pergamon), 19-38
[3] Lubliner, J., Plasticity Theory (1990), McMillan · Zbl 0745.73006
[4] Kamenjarzh, A. J., Limit Analysis of Solids and Structures (1996), CRC Press · Zbl 0859.73002
[5] Munoz, J. J.; Bonet, J.; Huerta, A.; Peraire, J., Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading, Int. J. Numer. Methods Engrg., 77, 471-501 (2009) · Zbl 1155.74313
[6] Cohn, M. Z., Introduction to engineering plasticity by mathematical programming, (Cohn, M. Z.; Maier, G., Engineering Plasticity by Mathematical Programming (1977), Proceedings of the NATO Advanced Study Institute: Proceedings of the NATO Advanced Study Institute Pergamon), 3-18
[7] Cohn, M. Z., Multi-criteria optimal design of frames, (Cohn, M. Z.; Maier, G., Engineering Plasticity by Mathematical Programming (1977), Proceedings of the NATO Advanced Study Institute: Proceedings of the NATO Advanced Study Institute Pergamon), 173-195 · Zbl 0464.73113
[8] Kaliszky, S.; Logo, J., Plastic behaviour and stability constraints in the shakedown analysis and optimal design of trusses, Struct. Multidiscipl. Optimization, 24, 118-124 (2002)
[9] Mayeda, R.; Prager, W., Minimum-weight design of beams for multiple loadings, Int. J. Solids Struct., 3, 1001-1011 (1967)
[10] Save, M., Fundamentals of rigid-plastic analysis and design, (Cohn, M. Z.; Maier, G., Engineering Plasticity by Mathematical Programming (1977), Proceedings of the NATO Advanced Study Institute: Proceedings of the NATO Advanced Study Institute Pergamon), 39-99 · Zbl 0802.73021
[11] Save, M. A.; Massonnet, C. E.; de Saxce, G., Plastic Limit Analysis of Plates Shells and Disks (1997), Elsevier · Zbl 0903.73001
[12] Smith, D. L.; Munro, J., Plastic analysis and synthesis of frames subjected to multiple loadings, Engrg. Optimization, 2, 145-157 (1976)
[13] Symonds, P. S.; Prager, W., Elastic-plastic analysis of structures subjected to loads varying arbitrarily between prescribed limits, J. Appl. Mech., 17, 315-323 (1950)
[14] Zyczkowski, Michal, Combined Loadings in the Theory of Plasticity (1981), PWN - Polish Scientific Publishers · Zbl 0497.73036
[15] Hodge, P. G.; Sun, C. K., General properties of yield point load surfaces, J. Appl. Mech., 35, 107-110 (1968)
[16] Fuschi, P.; Polizzotto, C., Interaction diagram of a circular bar in torsion and extension, J. Appl. Mech., 62, 233-235 (1995)
[17] Nafday, A. M.; Corotis, R. B.; Cohon, J. L., Multiparametric limit analysis of frames. 1. Model, J. Engrg. Mech. - ASCE, 114, 377-386 (1988)
[18] Tin-Loi, F.; Lo, Y. F., Collapse limit surface generation for multiparametric loading, Appl. Math. Model., 16, 491-497 (1992)
[19] Hodge, P. G., Limit analysis with multiple load parameters, Int. J. Solids Struct., 6, 661-675 (1970) · Zbl 0194.26302
[20] Shoemaker, E. M., Ultimate load interaction surface, ZAMP, 30, 456-467 (1979) · Zbl 0401.73050
[21] Nafday, A. M.; Corotis, R. B.; Cohon, J. L., Multiparametric limit analysis of frames. 2. Computations, J. Engrg. Mech. - ASCE, 114, 387-403 (1988)
[22] Rozvany, G. I.N., Structural Design Via Optimality Criteria: The Prager Approach to Structural Optimization (1989), Kluwer · Zbl 0687.73079
[23] Truesdell, C.; Toupin, R., The classical field theories, (Handbuch der Physik, vol. III/1 (1960), Springer), 577-590
[24] Day, W. A., \(L^p\)-estimates for static stress fields, Arch. Rational Mech. Anal., 69, 99-108 (1979) · Zbl 0399.73011
[25] Segev, R., Load capacity of bodies, Int. J. Non-Linear Mech., 42, 250-257 (2007) · Zbl 1200.74009
[26] Segev, R., Generalized stress concentration factors, Math. Mech. Solids, 11, 479-493 (2006) · Zbl 1141.74024
[27] Segev, R., Generalized stress concentration factors for equilibrated forces and stresses, J. Elasticity, 81, 293-315 (2005) · Zbl 1094.74024
[28] Segev, R., Optimization for the balance equations, (Silhavy, M., Mathematical Modeling of Bodies with Complicated Bulk and Boundary Behavior. Mathematical Modeling of Bodies with Complicated Bulk and Boundary Behavior, Quaderni di Matematica, vol. 20 (2007), University of Naples), 197-216
[29] Temam, R., Mathematical Problems in Plasticity (1985), Gauthier-Villars · Zbl 0457.73017
[30] Taylor, A. E., Introduction to Functional Analysis (1958), Wiley · Zbl 0081.10202
[31] Rozvany, G. I.N., Optimal Design of Flexural Systems (1976), Pergamon · Zbl 0342.73052
[32] Christiansen, E., Computations of limit loads, Int. J. Numer. Methods Engrg., 17, 1547-1570 (1981) · Zbl 0483.73030
[33] Christiansen, E., On the collapse solutions of limit analysis, Arch. Rational Mech. Anal., 91, 119-135 (1986)
[34] Christiansen, E., Limit analysis of collapse states, (Ciarlet, P. G.; Lions, J. L., Handbook of Numerical Analysis (1996), Elsevier), 193-312 · Zbl 0880.73063
[35] Kachanov, L. M., Foundations of the Theory of Plasticity (1971), Elsevier · Zbl 0231.73015
[36] Makrodimopoulos, A.; Martin, C. M., Upper bound limit analysis using discontinuous quadratic displacement fields, Commun. Numer. Methods Engrg., 24, 911-927 (2008) · Zbl 1156.74009
[37] Bazaraa, M. S., Linear Programming and Network Flow (1990), Wiley
[38] Boyd, S., Convex Optimization (2004), Cambridge University Press
[39] Luenberger, G. D., Linear and Nonlinear Programming (1984), Springer · Zbl 0571.90051
[40] Alizadeh, E.; Goldfarb, D., Second order cone programming, Math. Program., 95, 3-51 (2003) · Zbl 1153.90522
[41] Lobo, M. S.; Vandenberghe, L.; Boyd, S.; Lebret, H., Application of second order cone programming, Linear Algebra Appl., 284, 193-228 (1998) · Zbl 0946.90050
[42] Zalinescu, C., On the maximization of (not necessarily) convex functions on convex sets, J. Global Optimization, 36, 379-389 (2006) · Zbl 1120.90043
[43] Fukuda, K.; Prodon, A., The double description method revisited, (Combinatorics and Computer Science, vol. 1120 (1996), Springer), 91-111
[44] Golum, G. E.; Von-Loan, E. F., Matrix Computations (1996), Johns Hopkins University Press
[45] Ben-Israel, A.; Greville, T. N.E., General Inverses: Theory and Applications (1974), Wiley · Zbl 0305.15001
[46] Matlab Central File Exchange, <http://www.mathworks.com/matlabcentral>; Matlab Central File Exchange, <http://www.mathworks.com/matlabcentral>
[47] Sedumi Home Page, <http://sedumi.mcmaster.ca>; Sedumi Home Page, <http://sedumi.mcmaster.ca>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.