×

Identification of multibody vehicle models for crash analysis using an optimization methodology. (English) Zbl 1376.70025

Summary: This work proposes an optimization methodology for the identification of realistic multibody vehicle models, based on the plastic hinge approach, for crash analysis. The identification of the design variables and the objective function and constraints are of extreme importance for the success of the optimization. The characteristics of the plastic hinges are used as design variables while the objective functions are formulated with measures of the difference between the dynamic response of the model and a reference response. The sequential application of genetic and gradient-based optimization methods is used to solve the optimization problem constituting a systematic approach to the automatic identification of vehicle multibody models. The methodology is demonstrated with the identification of the multibody model of a large family car for side and front crash. The vehicle model is developed in the MADYMO multibody code which is linked with the optimization algorithms implemented in the Matlab Optimization Toolbox.

MSC:

70E99 Dynamics of a rigid body and of multibody systems

Software:

ADIFOR; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic road vehicle models for crashworthiness. Multibody Syst. Dyn. 19(1), 135–158 (2008) · Zbl 1210.70017 · doi:10.1007/s11044-007-9093-z
[2] Kamal, M.M., Wolf, J.A. (eds.): Modern Automotive Structural Analysis. Van Nostrand-Reinhold, New York (1982)
[3] Nikravesh, P.E., Chung, I.S., Benedict, R.L.: Plastic hinge approach to vehicle crash simulation. Comput. Struct. 16(1–4), 395–400 (1983) · doi:10.1016/0045-7949(83)90178-5
[4] Ambrósio, J., Dias, J.: A road vehicle multibody model for crash simulation based on the plastic hinges approach to structural deformations. Int. J. Crashworthiness 12(1), 77–92 (2007) · doi:10.1533/ijcr.2006.0171
[5] Milho, J., Ambrósio, J., Pereira, M.: Design of train crash experimental tests by optimization procedures. Int. J. Crashworthiness 9(5), 483–493 (2004) · doi:10.1533/ijcr.2004.0304
[6] Bennett, J.A., Lin, K.H., Nelson, M.F.: The application of optimization techniques to problems of automotive crashworthiness. SAE paper No. 770608, pp. 2255–2262 (1997)
[7] Song, J.O.: An optimization method for crashworthiness design. In: SAE Transactions, SAE Paper No. 860804, pp. 39–46 (1986)
[8] Lust, R.: Structural optimization with crashworthiness constraints. Struct. Optim. 4(2), 85–89 (1992) · doi:10.1007/BF01759921
[9] Dias, J.P., Pereira, M.S.: Design for crashworthiness using multibody dynamics. Int. J. Veh. Des. 15(6), 563–577 (1994)
[10] Etman, L.F.P., Adriaens, J.M.T.A., van Slagmaat, M.T.P., Schoofs, A.J.G.: Crash worthiness design optimization using multipoint sequential linear programming. Struct. Optim. 12, 222–228 (1996) · doi:10.1007/BF01197360
[11] Horstemeyer, M.F., Ren, X.C., Fang, H., Acar, E., Wang, P.T.: A comparative study of design optimization methodologies for side-impact crashworthiness, using injury-based versus energy-based criterion. Int. J. Crashworthiness 14(2), 125–138 (2009) · doi:10.1080/13588260802539489
[12] Jonsen, P., Isaksson, E., Sundin, K.G., Oldenburg, M.: Identification of lumped parameter automotive crash models for bumper system development. Int. J. Crashworthiness 14(6), 533–541 (2009) · doi:10.1080/13588260902837262
[13] Zhao, Y., Rosala, G.F., Campean, I.F., Day, A.J.: A response surface approach to front-car optimization for minimizing pedestrian head injury levels. Int. J. Crashworthiness 15(2), 143–150 (2010) · doi:10.1080/13588260903094392
[14] Aird, T., Rice, J.: Systematic search in high dimensional sets. SIAM J. Numer. Anal. 14, 293–312 (1977) · Zbl 0359.68044 · doi:10.1137/0714019
[15] Sedlaczek, K., Eberhard, P.: Using augmented Lagrangian particle swarm optimization for constrained problems in engineering. Struct. Multidisciplinary Optim. 32(4), 277–286 (2006) · doi:10.1007/s00158-006-0032-z
[16] Carvalho, M., Ambrosio, J.: Identification of optimal multibody vehicle models for crash analysis. J. Theor. Appl. Mech. 48(3) (2010)
[17] McCarthy, M., de Lange, R.: A generic evaluation methodology for advanced safety systems. Int. J. Crashworthiness 13(6), 599–608 (2008) · doi:10.1080/13588260802446123
[18] Tandler, J., Zimmerman, E., Munteau, V., Seipel, B., Koch, T., Willersinn, D., Grinberg, M., Mayer, C., Diez, M.: A new pre-crash system for side impact protection. Int. J. Crashworthiness 13(6), 679–692 (2008) · doi:10.1080/13588260802411499
[19] Carvalho, M.: Development of optimal multibody vehicle models for crash analysis. Ph.D. Dissertation, Technical University of Lisbon, Lisbon (2009)
[20] MADYMO Manuals: version 6.2. TNO MADYMO BV, Delft (2004)
[21] MATLAB Release Notes: The Mathworks, Inc., Natick (2008)
[22] Jones, N.: Material strain rate sensitivity. In: Ambrosio, J. (ed.) Crashworthiness: Energy Management and Occupant Protection, pp. 33–47. Springer, Vienna (2001)
[23] Ambrosio, J.: Rigid multibody systems: the plastic hinge approach. In: Ambrosio, J. (ed.) Crashworthiness: Energy Management and Occupant Protection, pp. 205–237. Springer, Vienna (2001)
[24] Winmer, A.: Einfluss der belastungsgesschwindigkeit auf das festigkeitsund verformungsverhalten am beispiel von kraftfarhzeugen. ATZ 77(10), 281–286 (1977)
[25] European Council for Europe: Regulation 33–uniform provisions concerning the approval of vehicles with regard to the behaviour of the structure of the impacted vehicle in a head-on collision (1995)
[26] European Council for Europe: Regulation 95–uniform provisions concerning the approval of vehicles with regard to the protection of the occupants in the event of a lateral collision (1995)
[27] Puppini, R., Diez, M., Avalle, M., Ciglaric, I., Feist, F.: Generic car (FE) models for categories super minis, small family cars, large family executive cars, MPV and heavy vehicle. Technical Report APROSYS AP-SP7-0029-A (2005)
[28] Mooi, H.G., Nastic, T., Huibers, J.H.A.M.: Modelling and optimization of car-to-car compatibility. In: VDI berichte Nr 1471, Düsseldorf, pp. 239–255 (1999)
[29] Gielen, A.W.J., Mooi, H.G., Huibers, J.H.A.M.: An optimization methodology for improving car-to-car compatibility. ImechE Trans. C567/047/2000 (2000)
[30] van der Zweep, C.D., Kellendonk, G., Lemmen, P.: Evaluation of fleet systems model for vehicle compatibility. Int. J. Crashworthiness 10(5), 483–494 (2005) · doi:10.1533/ijcr.2005.0363
[31] Gonçalves, J., Ambrósio, J.: Road vehicle multiple objective optimization for ride and stability. Multibody Syst. Dyn. 13(1), 3–23 (2005) · Zbl 1319.70004 · doi:10.1007/s11044-005-2528-5
[32] Censor, Y.: Pareto optimality in multiobjective problems. Appl. Math. Optim. 4, 41–59 (1977) · Zbl 0367.90097 · doi:10.1007/BF01442131
[33] Cunha, N.O., Polak, E.: Constrained minimization under vector valued criteria in finite dimensional spaces. J. Math. Anal. Appl. 19, 103–124 (1967) · Zbl 0154.44801 · doi:10.1016/0022-247X(67)90025-X
[34] Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001) · Zbl 0970.90091
[35] Cohon, J.L.: Multicriteria programming: Brief review and application. In: Gero, J.S. (ed.) Design Optimization, pp. 163–191. Academic Press, New York (1985)
[36] Adelman, H.M., Haftka, R.T.: Sensitivity analysis of discrete structural systems. AIAA J. 24, 823–832 (1986) · doi:10.2514/3.48671
[37] Greene, W., Haftka, R.: Computational aspects of sensitivity calculations in transient structural analysis. Comput. Struct. 32(2), 433–443 (1989) · doi:10.1016/0045-7949(89)90054-0
[38] Neto, M.A., Ambrósio, J., Leal, R.: Sensitivity analysis of flexible multibody systems using composite materials components. Int. J. Numer. Methods Eng. 77(3), 386–413 (2009) · Zbl 1155.74389 · doi:10.1002/nme.2417
[39] Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.: ADIFOR: generating derivative codes from FORTRAN programs. Sci. Program. 1(1), 11–29 (1992)
[40] Dias, J., Pereira, M.: Sensitivity analysis of rigid-flexible multibody systems. Multibody Syst. Dyn. 1, 303–322 (1997) · Zbl 0892.73035 · doi:10.1023/A:1009790202712
[41] Ambrósio, J., Eberhard, P.: Advanced Design of Mechanical Systems: From Analysis to Optimization. Springer, Vienna (2009)
[42] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) · Zbl 05451853 · doi:10.1109/4235.996017
[43] Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995) · Zbl 05412786 · doi:10.1162/evco.1995.3.1.1
[44] Eberhard, P., Dignath, F., Kübler, L.: Parallel evolutionary optimization of multibody systems with application to railway dynamics. Multibody Syst. Dyn. 9(2), 143–164 (2003) · Zbl 1041.70006 · doi:10.1023/A:1022515214842
[45] Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6, 163–168 (1963) · Zbl 0132.11603
[46] Goldfarb, D.: A family of variable metric updates derived by variational means. Math. Comput. 24, 23–26 (1970) · Zbl 0196.18002 · doi:10.1090/S0025-5718-1970-0258249-6
[47] Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)
[48] Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22, 297–309 (1977) · Zbl 0336.90046 · doi:10.1007/BF00932858
[49] Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis. Lecture Notes in Mathematics, vol. 630, pp. 144–175. Springer, Berlin (1978) · Zbl 0374.65032
[50] Powell, M.J.D.: The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 3. Academic Press, New York (1978) · Zbl 0464.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.