×

Allee optimal control of a system in ecology. (English) Zbl 1411.93198

Summary: The Allee threshold of an ecological system distinguishes the sign of population growth either towards extinction or to carrying capacity. In practice, human interventions can tune the Allee threshold for instance thanks to the sterile male technique and the mating disruption. In this paper, we address various control problems for a system described by a diffusion-reaction equation regulating the Allee threshold, viewed as a real parameter determining the unstable equilibrium of the bistable nonlinear reaction term. We prove that this system is the mean field limit of an interacting system of particles in which the individual behaviour is driven by stochastic laws. Numerical simulations of the stochastic process show that the propagation of population is governed by travelling wave solutions of the macroscopic reaction-diffusion system, which model the fact that solutions, in bounded space domains, reach asymptotically an equilibrium configuration.
An optimal control problem for the macroscopic model is then introduced with the objective of steering the system to a target travelling wave. Using well-known analytical results and stability properties of travelling waves, we show that well-chosen piecewise constant controls allow to reach the target approximately in sufficiently long time. We then develop a direct computational method and show its efficiency for computing such controls in various numerical simulations. Finally, we show the effectiveness of the obtained macroscopic optimal controls in the microscopic system of interacting particles and we discuss their advantage when addressing situations that are out of reach for the analytical methods. We conclude the paper with some open problems and directions for future research.

MSC:

93E20 Optimal stochastic control
93E03 Stochastic systems in control theory (general)
92D40 Ecology
35K57 Reaction-diffusion equations
90C15 Stochastic programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albi, G., Pareschi, L., Toscani, G. and Zanella, M., Recent advances in opinion modeling: Control and social influence, in Active Particles, Vol. 1 (Birkhäuser, 2017), pp. 49-98.
[2] Annunziato, M. and Borzì, A., A Fokker-Planck control framework for multidimensional stochastic processes, J. Comput. Appl. Math.237 (2013) 487-507. · Zbl 1251.35196
[3] Aronson, D. G. and Weinberger, H. F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations & Related Topics, , Vol. 446 (Springer, 1975), pp. 5-49. · Zbl 0325.35050
[4] Aronson, D. G. and Weinberger, H. F., Multidimensional nonlinear diffusions arising in population genetics, Adv. Math.30 (1978) 33-76. · Zbl 0407.92014
[5] Arrieta, J. M., López-Fernández, M. and Zuazua, E., Approximating travelling waves by equilibria of non-local equations, Asymptot. Anal.3 (2012) 145-186. · Zbl 1248.35038
[6] Aydogdu, A., Caponigro, M., McQuade, S., Piccoli, B., Duteil, N. P., Rossi, F. and Trélat, E., Interaction network, state space, and control in social dynamics, in Active Particles, Vol. 1 (Birkhäuser, 2017), pp. 99-140.
[7] Barthel, W., John, C. and Tröltzsch, F., Optimal boundary control of a system of reaction diffusion equations, J. Appl. Math. Mech.12 (2010) 966-982. · Zbl 1375.49030
[8] Barton, N. and Turelli, M., Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects, Am. Nat.178 (2011) E48-E75.
[9] K. Beauchard and M. Morancey, Local controllability of 1D Schrödinger equations with bilinear control and minimal time, arXiv:1208.5393. · Zbl 1281.93016
[10] Bellomo, N., Bellouquid, A. and Knopoff, D., From the microscale to collective crowd dynamics, Multiscale Model. Simul.11 (2013) 943-963. · Zbl 1280.90019
[11] Bellomo, N. and Preziosi, L., Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Modelling32 (2000) 413-452. · Zbl 0997.92020
[12] Bellomo, N. and Winkler, M., A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up, Comm. Partial Differential Equations42 (2017) 436-473. · Zbl 1430.35166
[13] Bellouquid, A. and Delitala, M., Mathematical Modeling of Complex Biological Systems (Birkhũser, 2006). · Zbl 1178.92002
[14] Bertsekas, D. P., Nonlinear Programming (Athena Scientific, 1999), pp. 1-60. · Zbl 1015.90077
[15] Bisi, M. and Desvillettes, L., From reactive Boltzmann equations to reaction-diffusion systems, J. Statist. Phys.124 (2006) 881-912. · Zbl 1134.82323
[16] Bliman, P. A. and Vauchelet, N., Establishing traveling wave in bistable reaction-diffusion system by feedback, IEEE Control Syst. Lett.1 (2017) 62-67.
[17] Bonnans, J. F., Gilbert, J. C., Lemaréchal, C. and Sagastizábal, C. A., Numerical Optimization: Theoretical and Practical Aspects (Springer Science \(\&\) Business Media, 2006). · Zbl 1108.65060
[18] Burini, D., Gibelli, L. and Outada, N., A kinetic theory approach to the modeling of complex living systems, in Active Particles, Vol. 1 (Birkhäuser, 2017), pp. 229-258.
[19] Cannarsa, P., Floridia, G. and Khapalov, A. Y., Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign, J. Math. Pures Appl.108 (2017) 425-458. · Zbl 1370.93140
[20] Carrillo, J. A., Choi, Y. P. and Perez, S. P., A review on attractive-repulsive mean fields for consensus in collective behavior, in Active Particles, Vol. 1 (Birkhäuser, 2017), pp. 259-298.
[21] Casas, E., Ryll, C. and Tröltzsch, F., Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems, Comput. Methods Appl. Math.1 (2013) 1-29. · Zbl 1393.49019
[22] Chalub, F. A., Markowich, P. A., Perthame, B. and Schmeiser, C., Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math.142 (2004) 123-141. · Zbl 1052.92005
[23] Coron, J. M., Control and Nonlinearity (Amer. Math. Soc., 2007). · Zbl 1140.93002
[24] Coron, J.-M. and Trélat, E., Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim.43 (2004) 549-569. · Zbl 1101.93011
[25] Coron, J.-M. and Trélat, E., Global steady-state stabilization and controllability of 1D semilinear wave equations, Commun. Contemp. Math.8 (2006) 535-567. · Zbl 1101.93039
[26] Cristiani, E., Piccoli, B. and Tosin, A., Multiscale modeling of granular flows with application to crowd dynamics, Multiscale Model. Simul.9 (2011) 155-182. · Zbl 1221.35232
[27] Durrett, R., Crabgrass, measles, and gypsy moths: An introduction to modern probability, Bull. Amer. Math. Soc.18 (1988) 117-143. · Zbl 0653.60095
[28] Durrett, R., Ten lectures on particle systems, in Lectures on Probability Theory (Springer, 1995), pp. 97-201. · Zbl 0840.60088
[29] Engl, H. W., Hanke, M. and Neubauer, A., Regularization of Inverse Problems (Springer Science & Business Media, 1996). · Zbl 0859.65054
[30] Erneux, T. and Nicolis, G., Propagating waves in discrete bistable reaction-diffusion systems, Phys. D67 (1993) 237-244. · Zbl 0787.92010
[31] Fernández, L. A. and Khapalov, A. Y., Controllability properties for the one-dimensional heat equation under multiplicative or non-negative additive controls with local mobile support, ESAIM Control Optim. Calc. Var.4 (2012) 1207-1224. · Zbl 1262.35119
[32] Fife, P. C. and McLeod, J. B., The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal.65 (1977) 335-361. · Zbl 0361.35035
[33] Filbet, F., Laurenot, P. and Perthame, B., Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol.50 (2005) 189-207. · Zbl 1080.92014
[34] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugen.7 (1937) 355-369. · JFM 63.1111.04
[35] Fleming, W. H. and Rishel, R. W., Deterministic and Stochastic Optimal Control (Springer-Verlag, 1975). · Zbl 0323.49001
[36] Forsgren, A., Gill, P. E. and Wright, M. H., Interior methods for nonlinear optimization, SIAM Rev.4 (2002) 525-597. · Zbl 1028.90060
[37] R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A mathematical programming language, Technical Report, AT&T Bell Laboratories, Murray Hill (1987). · Zbl 0701.90062
[38] Francesco, M. D., Fagioli, S., Rosini, M. D. and Russo, G., Follow-the-leader approximations of macroscopic models for vehicular and pedestrian flows, in Active Particles, Vol. 1 (Birkhäuser, 2017), pp. 333-378.
[39] F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FreeFem \(+ +\) Manual (2005), http://www.freefem.org/.
[40] Hillen, T. and Othmer, H. G., The diffusion limit of transport equations derived from velocity jump processes, SIAM J. Appl Math.61 (2000) 751-775. · Zbl 1002.35120
[41] Hodgkin, A. L. and Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol.117 (1952) 500-544.
[42] Iriberri, N. and Uriarte, J.-R., Minority language and the stability of bilingual equilibria, Ration. Soc.24 (2012) 442-462.
[43] Itô, Y. and Kawamoto, H., Number of generations necessary to attain eradication of an insect pest with sterile insect release method: A model study, Res. Popul. Ecol. (Kyoto)20 (1979) 216-226.
[44] Kanarek, A. R. and Webb, C. T., Allee effects, adaptive evolution, and invasion success, Evol. Appl.2 (2010) 122-135.
[45] Kàrn’y, M., Towards fully probabilistic control design, Automatica32 (1996) 1719-1722. · Zbl 0868.93022
[46] Keener, J. P. and Sneyd, J., Mathematical Physiology (Springer, 1998). · Zbl 0913.92009
[47] Klassen, W. and Curtis, C. F., History of the sterile insect technique, in Sterile Insect Technique (Springer, 2005), pp. 3-36.
[48] Knipling, E. F., Sterile-male method of population control, Science130 (1959) 902-904.
[49] Laplante, J. P. and Erneux, T., Propagation failure in arrays of coupled bistable chemical reactors, J. Phys. Chem.96 (1992) 4931-4934.
[50] Lewis, M. A. and Kareiva, P., Allee dynamics and the spread of invading organisms, Theor. Popul. Biol.2 (1993) 141-158. · Zbl 0769.92025
[51] Liebhold, A. M. and Tobin, P. C., Population ecology of insect invasions and their management, Annu. Rev. Entomol.53 (2008) 387-408.
[52] Lions, J. L., Contrôle Optimal de Systemes Gouvernés par des Équations aux Dérivées Partielles (Gauthier-Villars, 1968). · Zbl 0179.41801
[53] Masi, A. D., Ferrari, P. A. and Lebowitz, J., Reaction-diffusion equations for interacting particle systems, J. Statist Phys.44 (1986) 589-644. · Zbl 0629.60107
[54] Masi, A. D., Presutti, E. and Vares, M. E., Escape from the unstable equilibrium in a random process with infinitely many interacting particles, J. Statist Phys.44 (1986) 645-696. · Zbl 0652.60110
[55] Murray, J. D., Mathematical Biology. II Spatial Models and Biomedical Applications, , Vol. 18, Chapter 1 (Springer-Verlag, 2001), pp. 1-43.
[56] Nagumo, J., Yoshizawa, S. and Arimoto, S., Bistable transmission lines, IEEE Trans. Circuit Theory3 (1965) 400-412.
[57] Neuhauser, C., Mathematical challenges in spatial ecology, Notices Amer. Math. Soc. 4811 (2002) 1304-1314. · Zbl 1128.92328
[58] Okubo, A. and Levin, S. A., Diffusion and Ecological Problems, Modern Perspectives, , Chapter 2 (Springer, 2001), pp. 10-30.
[59] Perthame, B., Mathematical tools for kinetic equations, Bull. Amer. Math. Soc.41(2) (2004) 205-244. · Zbl 1151.82351
[60] Perthame, B., Parabolic equations in biology, in Parabolic Equations in Biology (Springer International Publishing, 2015), pp. 1-21. · Zbl 1333.35001
[61] Phillips, D. L., A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach.9 (1962) 84-97. · Zbl 0108.29902
[62] C. Pouchol, E. Trélat and E. Zuazua, Phase portrait control 1D monostable and bistable reaction-diffusion equations, preprint, arXiv:1805.10786v1 (2018), 30 pp. · Zbl 1406.35161
[63] Raymond, J.-P. and Zidani, H., Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations, Appl. Math. Optim.2 (1999) 143-177. · Zbl 0922.49013
[64] Ruszczyński, A. P., Nonlinear Optimization (Princeton Univ. Press, 2006). · Zbl 1108.90001
[65] Ryll, C., Löber, J., Martens, S., Engel, H. and Tröltzsch, F., Analytical, optimal, and sparse optimal control of traveling wave solutions to reaction-diffusion systems, in Control of Self-Organizing Nonlinear Systems (Springer International Publishing, 2016), pp. 189-210.
[66] Stevens, A., The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math.61 (2000) 183-212. · Zbl 0963.60093
[67] Strikwerda, J. C., Finite Difference Schemes and Partial Differential Equation (Society for Industrial and Applied Mathematics, 2004). · Zbl 1071.65118
[68] Strugarek, M. and Vauchelet, N., Reduction to a single closed equation for 2-by-2 reaction-diffusion systems of Lotka-Volterra type, SIAM J. Appl. Math.76 (2016) 2060-2080. · Zbl 1355.35108
[69] Taylor, C. R., Determining optimal sterile male release strategies, Environ. Entomol.5 (1976) 87-95.
[70] Tits, A. L., Wächter, A., Bakhtiari, S., Urban, T. J. and Lawrence, C. T., A primal-dual interior-point method for nonlinear programming with strong global and local convergence properties, SIAM J. Optim.1 (2003) 173-199. · Zbl 1075.90078
[71] Tröltzsch, F., Optimal Control of Partial Differential Equations, , Chapter 5 (Amer. Math. Soc., 2010), pp. 265-312. · Zbl 1195.49001
[72] A. Wächter, An interior point algorithm for large-scale nonlinear optimization with applications in process engineering, PhD thesis, Carnegie Mellon University (2002).
[73] Winkler, M. and Bellomo, N., Finite-time blow-up in a degenerate chemotaxis system with flux limitation, Trans. Amer. Math. Soc. Ser. B4 (2017) 31-67. · Zbl 1367.35044
[74] Ycart, B., Modèles et Algorithmes Markoviens (Springer Science & Business Media, 2002). · Zbl 1006.65005
[75] Zuazua, E., Controllability and observability of partial differential equations: Some results and open problems, in Handbook of Differential Equations: Evolutionary Equations, North-Holland (2007), pp. 527-621. · Zbl 1193.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.