×

A quasi-separation principle and Newton-like scheme for coherent quantum LQG control. (English) Zbl 1277.49045

Summary: This paper is concerned with the coherent quantum Linear Quadratic Gaussian (LQG) control problem of constructing an optimal controller for linear quantum plants using a quadratic performance criterion. Coherent quantum feedback control does not employ classical measurements which inherently entail the loss of quantum information. A coherent quantum controller is itself a quantum system and this imposes Physical Realizability (PR) constraints on the quantum stochastic differential equation which governs such a controller. PR corresponds to the equivalence of the controller to an open quantum harmonic oscillator whereby its state-space matrices are related to the Hamiltonian and coupling operators of the oscillator. The Hamiltonian parameterization of the controller is combined with Fréchet differentiation of the LQG cost with respect to the state-space matrices in order to obtain equations for the optimal controller. A quasi-separation property for the gain matrices of the quantum controller is established, and a Newton-like iterative scheme for the numerical solution of the equations is outlined.

MSC:

49N10 Linear-quadratic optimal control problems
81Q93 Quantum control
49M15 Newton-type methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lloyd, S., Coherent quantum feedback, Phys. Rev. A, 62, 2, 022108 (2000)
[2] Wiseman, H. M.; Milburn, G. J., All-optical versus electro-optical quantum-limited feedback, Phys. Rev. A, 49, 5, 4110-4125 (1994)
[3] Gardiner, C. W.; Zoller, P., Quantum Noise (2004), Springer: Springer Berlin · Zbl 1072.81002
[5] Merzbacher, E., Quantum Mechanics (1998), Wiley: Wiley New York
[6] Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus (1992), Birkhäuser: Birkhäuser Basel · Zbl 0751.60046
[8] James, M. R.; Nurdin, H. I.; Petersen, I. R., \(H^\infty\) control of linear quantum stochastic systems, IEEE Trans. Automat. Control, 53, 8, 1787-1803 (2008) · Zbl 1367.93178
[9] Nurdin, H. I.; James, M. R.; Petersen, I. R., Coherent quantum LQG control, Automatica, 45, 1837-1846 (2009) · Zbl 1185.49037
[11] Shaiju, A. J.; Petersen, I. R., A frequency domain condition for the physical realizability of linear quantum systems, IEEE Trans. Automat. Control, 57, 8, 2033-2044 (2012) · Zbl 1369.81045
[12] Kwakernaak, H.; Sivan, R., Linear Optimal Control Systems (1972), Wiley: Wiley New York · Zbl 0276.93001
[13] Lewis, F. L.; Syrmos, V. L., Optimal Control (1995), Wiley: Wiley New York
[14] Parthasarathy, K. R., What is a Gaussian state?, Commun. Stoch. Anal., 4, 2, 143-160 (2010) · Zbl 1331.81169
[15] Jacobs, K.; Knight, P. L., Linear quantum trajectories: applications to continuous projection measurements, Phys. Rev. A, 57, 4, 2301-2310 (1998)
[18] Zhang, G.; James, M. R., Direct and indirect couplings in coherent feedback control of linear quantum systems, IEEE Trans. Automat. Control, 56, 7, 1535-1550 (2011) · Zbl 1368.81095
[19] Skelton, R. E.; Iwasaki, T.; Grigoriadis, K. M., A Unified Algebraic Approach to Linear Control Design (1998), Taylor & Francis: Taylor & Francis London
[20] Bernstein, D. S.; Haddad, W. M., LQG control with an \(H_\infty\) performance bound: a Riccati equation approach, IEEE Trans. Automat. Control, 34, 3, 293-305 (1989) · Zbl 0674.93069
[22] Magnus, J. R., Linear Structures (1988), Oxford University Press: Oxford University Press New York · Zbl 0667.15010
[23] Bouten, L.; van Handel, R., On the separation principle in quantum control, (Belavkin, V. P.; Guţă, M., Quantum Stochastics and Information (2008), World Scientific), 206-238 · Zbl 1183.81074
[24] Yanagisawa, M.; Kimura, H., Transfer function approach to quantum control-part II: control concepts and applications, IEEE Trans. Automat. Control, 48, 12, 2121-2132 (2003) · Zbl 1364.81147
[25] Simon, R., Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett., 84, 12, 2726-2729 (2000)
[26] Higham, N. J., Functions of Matrices (2008), SIAM: SIAM Philadelphia
[27] Horn, R. A.; Johnson, C. R., Matrix Analysis (2007), Cambridge University Press: Cambridge University Press New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.