Tselishcheva, Irina; Shishkin, Grigorii On a reliable numerical method for a singularly perturbed parabolic reaction-diffusion problem in a doubly connected domain. (English) Zbl 1434.65139 Dimov, Ivan (ed.) et al., Finite difference methods. Theory and applications. 7th international conference, FDM 2018, Lozenetz, Bulgaria, June 11–16, 2018. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11386, 558-565 (2019). MSC: 65M06 65M50 65M55 65M12 PDF BibTeX XML Cite \textit{I. Tselishcheva} and \textit{G. Shishkin}, Lect. Notes Comput. Sci. 11386, 558--565 (2019; Zbl 1434.65139) Full Text: DOI
Khaleghi, M.; Talebi Moghaddam, M.; Babolian, E.; Abbasbandy, S. Solving a class of singular two-point boundary value problems using new effective reproducing kernel technique. (English) Zbl 1427.65121 Appl. Math. Comput. 331, 264-273 (2018). MSC: 65L10 34A45 46E22 65L11 PDF BibTeX XML Cite \textit{M. Khaleghi} et al., Appl. Math. Comput. 331, 264--273 (2018; Zbl 1427.65121) Full Text: DOI
Tursunov, Dilmurat Aabdullazhanovich; Kozhobekov, Kudaĭberdi Gaparalievich The asymptotics of solutions of a singularly perturbed equation with a of fractional turning point. (Russian. English summary) Zbl 1387.34087 Izv. Irkutsk. Gos. Univ., Ser. Mat. 21, 108-121 (2017). Reviewer: Robert Vrabel (Trnava) MSC: 34E05 34E15 34A12 PDF BibTeX XML Cite \textit{D. A. Tursunov} and \textit{K. G. Kozhobekov}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 21, 108--121 (2017; Zbl 1387.34087) Full Text: Link
Heidarkhani, Shapour; Henderson, Johnny Infinitely many solutions for a perturbed quasilinear two-point boundary value problem. (English) Zbl 1399.34058 An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 63, No. 1, 89-107 (2017). MSC: 34B10 34B15 PDF BibTeX XML Cite \textit{S. Heidarkhani} and \textit{J. Henderson}, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 63, No. 1, 89--107 (2017; Zbl 1399.34058)
Amrein, Mario; Wihler, Thomas P. Adaptive pseudo-transient-continuation-Galerkin methods for semilinear elliptic partial differential equations. (English) Zbl 1384.65082 Numer. Methods Partial Differ. Equations 33, No. 6, 2005-2022 (2017). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N15 35J61 35B25 65N50 PDF BibTeX XML Cite \textit{M. Amrein} and \textit{T. P. Wihler}, Numer. Methods Partial Differ. Equations 33, No. 6, 2005--2022 (2017; Zbl 1384.65082) Full Text: DOI arXiv
Zhang, Huixing; Zhang, Ran Existence of positive solutions to perturbed nonlinear Dirichlet problems involving critical growth. (English) Zbl 1370.35043 Electron. J. Differ. Equ. 2017, Paper No. 54, 11 p. (2017). MSC: 35B33 35J60 35J65 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{R. Zhang}, Electron. J. Differ. Equ. 2017, Paper No. 54, 11 p. (2017; Zbl 1370.35043) Full Text: Link
Tursunov, D. A. The asymptotic solution of the three-band bisingularly problem. (English) Zbl 1383.34078 Lobachevskii J. Math. 38, No. 3, 542-546 (2017). Reviewer: Klaus R. Schneider (Berlin) MSC: 34E05 34B15 34E15 PDF BibTeX XML Cite \textit{D. A. Tursunov}, Lobachevskii J. Math. 38, No. 3, 542--546 (2017; Zbl 1383.34078) Full Text: DOI
Claeys, X. Asymptotics of the eigenvalues of the Dirichlet-Laplace problem in a domain with thin tube excluded. (English) Zbl 1349.35259 Q. Appl. Math. 74, No. 4, 595-605 (2016). Reviewer: Denise Huet (Nancy) MSC: 35P20 35P25 35P15 PDF BibTeX XML Cite \textit{X. Claeys}, Q. Appl. Math. 74, No. 4, 595--605 (2016; Zbl 1349.35259) Full Text: DOI
Piatnitski, A.; Rybalko, V. On the first eigenpair of singularly perturbed operators with oscillating coefficients. (English) Zbl 1339.35199 Commun. Partial Differ. Equations 41, No. 1, 1-31 (2016). Reviewer: Rodica Luca (Iaşi) MSC: 35P05 35J25 35A02 35B25 35J75 35D40 35F21 35F30 PDF BibTeX XML Cite \textit{A. Piatnitski} and \textit{V. Rybalko}, Commun. Partial Differ. Equations 41, No. 1, 1--31 (2016; Zbl 1339.35199) Full Text: DOI
Lanza de Cristoforis, M.; Musolino, P. A functional analytic approach to homogenization problems. (English) Zbl 06567038 Constanda, Christian (ed.) et al., Integral methods in science and engineering. Theoretical and computational advances. Papers based on the presentations at the international conference, IMSE, Karlsruhe, Germany, July 21–25, 2014. Cham: Birkhäuser/Springer (ISBN 978-3-319-16726-8/hbk; 978-3-319-16727-5/ebook). 353-359 (2015). MSC: 74 PDF BibTeX XML Cite \textit{M. Lanza de Cristoforis} and \textit{P. Musolino}, in: Integral methods in science and engineering. Theoretical and computational advances. Papers based on the presentations at the international conference, IMSE, Karlsruhe, Germany, July 21--25, 2014. Cham: Birkhäuser/Springer. 353--359 (2015; Zbl 06567038) Full Text: DOI
Riva, M. Dalla; Musolino, P.; Rogosin, S. V. Series expansions for the solution of the Dirichlet problem in a planar domain with a small hole. (English) Zbl 1327.35079 Asymptotic Anal. 92, No. 3-4, 339-361 (2015). Reviewer: Andreas Kleefeld (Cottbus) MSC: 35J05 31A05 35B25 35C20 PDF BibTeX XML Cite \textit{M. D. Riva} et al., Asymptotic Anal. 92, No. 3--4, 339--361 (2015; Zbl 1327.35079) Full Text: DOI
Shishkin, G.; Shishkina, L.; Petrenko, A. Standard difference scheme for a singularly perturbed convection-diffusion equation in the presence of perturbations. (English) Zbl 1319.65068 Ansari, Ali R. (ed.), Advances in applied mathematics. Selected papers based on the presentations at the 1st Gulf international conference on applied mathematics 2013, GICAM ’13, Kuwait City, Kuwait, in cooperation with the Society for Industrial and Applied Mathematics, SIAM, November 19–21, 2013. Cham: Springer (ISBN 978-3-319-06922-7/hbk; 978-3-319-06923-4/ebook). Springer Proceedings in Mathematics & Statistics 87, 41-55 (2014). MSC: 65L12 65L10 34B05 65L11 65L20 PDF BibTeX XML Cite \textit{G. Shishkin} et al., in: Advances in applied mathematics. Selected papers based on the presentations at the 1st Gulf international conference on applied mathematics 2013, GICAM '13, Kuwait City, Kuwait, in cooperation with the Society for Industrial and Applied Mathematics, SIAM, November 19--21, 2013. Cham: Springer. 41--55 (2014; Zbl 1319.65068) Full Text: DOI
Shishkin, G. I. Data perturbation stability of difference schemes on uniform grids for a singularly perturbed convection-diffusion equation. (English) Zbl 1276.65043 Russ. J. Numer. Anal. Math. Model. 28, No. 4, 381-418 (2013). MSC: 65L11 65L20 34B05 34E15 65L10 65L50 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Russ. J. Numer. Anal. Math. Model. 28, No. 4, 381--418 (2013; Zbl 1276.65043) Full Text: DOI
Musolino, Paolo A singularly perturbed Dirichlet problem for the Poisson equation in a periodically perforated domain. A functional analytic approach. (English) Zbl 1266.35039 Almeida, Alexandre (ed.) et al., Advances in harmonic analysis and operator theory. The Stefan Samko anniversary volume on the occasion of his 70th birthday. Mainly based on the presentations at two conferences, Lisbon and Aveiro, Portugal, in June – July, 2011. Basel: Birkhäuser (ISBN 978-3-0348-0515-5/hbk; 978-3-0348-0516-2/ebook). Operator Theory: Advances and Applications 229, 269-289 (2013). MSC: 35J25 31B10 45A05 47H30 35J05 PDF BibTeX XML Cite \textit{P. Musolino}, Oper. Theory: Adv. Appl. 229, 269--289 (2013; Zbl 1266.35039) Full Text: DOI arXiv
Novotny, Antonio André; Sokołowski, Jan Topological derivatives in shape optimization. (English) Zbl 1276.35002 Interaction of Mechanics and Mathematics. Berlin: Springer (ISBN 978-3-642-35244-7/pbk; 978-3-642-35245-4/ebook). xxi, 412 p. (2013). Reviewer: Jan Lovíšek (Bratislava) MSC: 35-02 65-02 35Jxx 35B25 35Q74 PDF BibTeX XML Cite \textit{A. A. Novotny} and \textit{J. Sokołowski}, Topological derivatives in shape optimization. Berlin: Springer (2013; Zbl 1276.35002) Full Text: DOI
Shishkin, Grigory; Shishkina, Lidia Scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation; approximation of solutions and derivatives. (English) Zbl 1260.65069 Int. J. Numer. Anal. Model., Ser. B 3, No. 2, 168-184 (2012). MSC: 65L11 65L10 65L12 65L20 65L70 34E15 34B05 PDF BibTeX XML Cite \textit{G. Shishkin} and \textit{L. Shishkina}, Int. J. Numer. Anal. Model., Ser. B 3, No. 2, 168--184 (2012; Zbl 1260.65069) Full Text: Link
Krupchyk, Katsiaryna; Lassas, Matti; Uhlmann, Gunther Determining a first order perturbation of the biharmonic operator by partial boundary measurements. (English) Zbl 1239.35184 J. Funct. Anal. 262, No. 4, 1781-1801 (2012). Reviewer: Mihai Pascu (Bucureşti) MSC: 35R30 45Q05 35J30 35B20 PDF BibTeX XML Cite \textit{K. Krupchyk} et al., J. Funct. Anal. 262, No. 4, 1781--1801 (2012; Zbl 1239.35184) Full Text: DOI arXiv
Shishkin, G. I.; Shishkina, L. P. Improved difference scheme of the solution decomposition method for a singularly perturbed reaction-diffusion equation. (English. Russian original) Zbl 1227.65067 Proc. Steklov Inst. Math. 272, Suppl. 1, 197-214 (2011); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 16, No. 1, 255-271 (2010). MSC: 65L12 65L11 34B10 34E15 65L20 PDF BibTeX XML Cite \textit{G. I. Shishkin} and \textit{L. P. Shishkina}, Proc. Steklov Inst. Math. 272, 197--214 (2011; Zbl 1227.65067); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 16, No. 1, 255--271 (2010) Full Text: DOI
Meng, Haixia Existence of infinitely many solutions for a class of linear perturbed symmetric elliptic problem with nonhomogeneous boundary. (English) Zbl 1258.35067 Russ. J. Math. Phys. 17, No. 4, 468-475 (2010). Reviewer: Lubomira Softova (Aversa) MSC: 35J05 35J25 PDF BibTeX XML Cite \textit{H. Meng}, Russ. J. Math. Phys. 17, No. 4, 468--475 (2010; Zbl 1258.35067) Full Text: DOI arXiv
D’Aguì, Giuseppina; Molica Bisci, Giovanni Infinitely many solutions for perturbed hemivariational inequalities. (English) Zbl 1222.49011 Bound. Value Probl. 2010, Article ID 363518, 19 p. (2010). MSC: 49J40 49J52 PDF BibTeX XML Cite \textit{G. D'Aguì} and \textit{G. Molica Bisci}, Bound. Value Probl. 2010, Article ID 363518, 19 p. (2010; Zbl 1222.49011) Full Text: DOI
Lube, Gert; Tews, Benjamin Optimal control of singularly perturbed advection-diffusion-reaction problems. (English) Zbl 1193.65106 Math. Models Methods Appl. Sci. 20, No. 3, 375-395 (2010). Reviewer: Hans Benker (Merseburg) MSC: 65K10 65N30 65N12 PDF BibTeX XML Cite \textit{G. Lube} and \textit{B. Tews}, Math. Models Methods Appl. Sci. 20, No. 3, 375--395 (2010; Zbl 1193.65106) Full Text: DOI
Cardone, G.; Nazarov, S. A.; Sokolowski, J. Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary. (English) Zbl 1175.35040 Asymptotic Anal. 62, No. 1-2, 41-88 (2009). Reviewer: Lubomira Softova (Aversa) MSC: 35J25 35B40 35C20 35B25 35J61 PDF BibTeX XML Cite \textit{G. Cardone} et al., Asymptotic Anal. 62, No. 1--2, 41--88 (2009; Zbl 1175.35040)
Shishkin, Grigory Improved difference scheme for a singularly perturbed parabolic reaction-diffusion equation with discontinuous initial condition. (English) Zbl 1233.65060 Margenov, Svetozar (ed.) et al., Numerical analysis and its applications. 4th international conference, NAA 2008, Lozenetz, Bulgaria, June 16–20, 2008. Revised selected papers. Berlin: Springer (ISBN 978-3-642-00463-6/pbk). Lecture Notes in Computer Science 5434, 116-127 (2009). MSC: 65M06 35B25 35K57 PDF BibTeX XML Cite \textit{G. Shishkin}, Lect. Notes Comput. Sci. 5434, 116--127 (2009; Zbl 1233.65060) Full Text: DOI
Nazarov, S. A. Selfadjoint extensions of the operator of the Dirichlet problem in a 3-dimensional region with an edge. (Russian) Zbl 1224.35074 Sib. Zh. Ind. Mat. 11, No. 1, 80-95 (2008). MSC: 35J05 PDF BibTeX XML Cite \textit{S. A. Nazarov}, Sib. Zh. Ind. Mat. 11, No. 1, 80--95 (2008; Zbl 1224.35074)
Cordaro, Giuseppe; Rao, Giuseppe Three solutions for a perturbed Dirichlet problem. (English) Zbl 1141.35030 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 12, 3879-3883 (2008). MSC: 35J65 35D05 35J20 PDF BibTeX XML Cite \textit{G. Cordaro} and \textit{G. Rao}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 12, 3879--3883 (2008; Zbl 1141.35030) Full Text: DOI
Lanza de Cristoforis, Massimo Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach. (English) Zbl 1153.35020 Analysis, München 28, No. 1, 63-93 (2008). Reviewer: Sergei V. Rogosin (Minsk) MSC: 35J25 45F15 47H30 35B40 31B20 31B10 PDF BibTeX XML Cite \textit{M. Lanza de Cristoforis}, Analysis, München 28, No. 1, 63--93 (2008; Zbl 1153.35020) Full Text: DOI
Cardone, Giuseppe; Nazarov, Sergey A.; Sokolowski, Jan; Taskinen, Jari Asymptotics of Neumann harmonics when a cavity is close to the exterior boundary of the domain. (English) Zbl 1133.35038 C. R., Méc., Acad. Sci. Paris 335, No. 12, 763-767 (2007). MSC: 35J25 35B40 35B25 PDF BibTeX XML Cite \textit{G. Cardone} et al., C. R., Méc., Acad. Sci. Paris 335, No. 12, 763--767 (2007; Zbl 1133.35038) Full Text: DOI
Shishkin, G. I. A method of asymptotic constructions with improved accuracy for quasilinear singularly perturbed parabolic convection-diffusion equation. (Russian, English) Zbl 1210.65143 Zh. Vychisl. Mat. Mat. Fiz. 46, No. 2, 242-261 (2006); translation in Comput. Math. Math. Phys. 46, No. 2, 231-250 (2006). MSC: 65L50 35B25 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Zh. Vychisl. Mat. Mat. Fiz. 46, No. 2, 242--261 (2006; Zbl 1210.65143); translation in Comput. Math. Math. Phys. 46, No. 2, 231--250 (2006) Full Text: Link
Shishkin, G. I. Higher-order accurate method for a quasilinear singularly perturbed elliptic convection-diffusion equation. (Russian. English summary) Zbl 1115.65095 Sib. Zh. Vychisl. Mat. 9, No. 1, 81-108 (2006). MSC: 65M06 65M70 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Sib. Zh. Vychisl. Mat. 9, No. 1, 81--108 (2006; Zbl 1115.65095)
Yan, Guozheng; Huang, Junhua The scattering problem for a locally perturbed half-plane. (Chinese. English summary) Zbl 1141.35042 Acta Math. Sci., Ser. A, Chin. Ed. 26, No. 6, 863-871 (2006). MSC: 35P25 35J25 PDF BibTeX XML Cite \textit{G. Yan} and \textit{J. Huang}, Acta Math. Sci., Ser. A, Chin. Ed. 26, No. 6, 863--871 (2006; Zbl 1141.35042)
Adimurthi; Grossi, Massimo; Santra, Sanjiban Optimal Hardy–Rellich inequalities, maximum principle and related eigenvalue problem. (English) Zbl 1109.31005 J. Funct. Anal. 240, No. 1, 36-83 (2006). Reviewer: Bodo Dittmar (Halle) MSC: 31B30 35P15 26D10 PDF BibTeX XML Cite \textit{Adimurthi} et al., J. Funct. Anal. 240, No. 1, 36--83 (2006; Zbl 1109.31005) Full Text: DOI
Lanza de Cristoforis, Massimo A singular perturbation Dirichlet boundary value problem for harmonic functions on a domain with a small hole. (English) Zbl 1126.35010 Kazama, Hideaki (ed.) et al., Proceedings of the 12th international conference on finite or infinite dimensional complex analysis and applications, ICFIDCAA, Tokyo, Japan, July 27– 31, 2004. Fukuoka: Kyushu University Press (ISBN 4-87378-899-4/pbk). 205-212 (2005). Reviewer: Dagmar Medková (Praha) MSC: 35J05 35J25 31A25 PDF BibTeX XML Cite \textit{M. Lanza de Cristoforis}, in: Proceedings of the 12th international conference on finite or infinite dimensional complex analysis and applications, ICFIDCAA, Tokyo, Japan, July 27-- 31, 2004. Fukuoka: Kyushu University Press. 205--212 (2005; Zbl 1126.35010)
Hemker, P. W.; Shishkin, G. I.; Shishkina, L. P. High-order accurate decomposition of the Richardson method for a singularly perturbed elliptic reaction-diffusion equation. (Russian, English) Zbl 1114.65128 Zh. Vychisl. Mat. Mat. Fiz. 44, No. 2, 329-337 (2004); translation in Comput. Math. Math. Phys. 44, No. 2, 309-316 (2004). Reviewer: Evgenij Nechaev (Moskva) MSC: 65N06 35B25 35J25 65N15 65N55 PDF BibTeX XML Cite \textit{P. W. Hemker} et al., Zh. Vychisl. Mat. Mat. Fiz. 44, No. 2, 329--337 (2004; Zbl 1114.65128); translation in Comput. Math. Math. Phys. 44, No. 2, 309--316 (2004) Full Text: Link
Denisov, I. V. A corner boundary layer in nonmonotone singularly perturbed boundary value problems with nonlinearities. (Russian, English) Zbl 1136.35359 Zh. Vychisl. Mat. Mat. Fiz. 44, No. 9, 1674-1692 (2004); translation in Comput. Math. Math. Phys. 44, No. 9, 1592-1610 (2004). Reviewer: Elena Glukhova (Moskva) MSC: 35J60 35B25 PDF BibTeX XML Cite \textit{I. V. Denisov}, Zh. Vychisl. Mat. Mat. Fiz. 44, No. 9, 1674--1692 (2004; Zbl 1136.35359); translation in Comput. Math. Math. Phys. 44, No. 9, 1592--1610 (2004) Full Text: Link
Butuzov, V. F.; Kryazhimskiĭ, S. A.; Nedel’ko, I. V. On the global domain of influence of stable steplike contrast structures in the Dirichlet problem. (Russian, English) Zbl 1072.35538 Zh. Vychisl. Mat. Mat. Fiz. 44, No. 6, 1039-1061 (2004); translation in Comput. Math. Math. Phys. 44, No. 6, 985-1006 (2004). MSC: 35K55 35B25 35B40 PDF BibTeX XML Cite \textit{V. F. Butuzov} et al., Zh. Vychisl. Mat. Mat. Fiz. 44, No. 6, 1039--1061 (2004; Zbl 1072.35538); translation in Comput. Math. Math. Phys. 44, No. 6, 985--1006 (2004) Full Text: Link
Ben Belgacem, Faker; El Fekih, Henda; Metoui, Hejer Singular perturbation for the Dirichlet boundary control of elliptic problems. (English) Zbl 1051.49012 M2AN, Math. Model. Numer. Anal. 37, No. 5, 833-850 (2003). MSC: 49K20 35B25 35J25 35A35 65M60 PDF BibTeX XML Cite \textit{F. Ben Belgacem} et al., M2AN, Math. Model. Numer. Anal. 37, No. 5, 833--850 (2003; Zbl 1051.49012) Full Text: DOI Numdam EuDML
Guo, Zongming Remarks on the shape of least-energy solutions to a semilinear Dirichlet problem. (English) Zbl 1433.35126 J. Partial Differ. Equations 14, No. 4, 365-383 (2001). MSC: 35J70 35J25 35B50 35J60 35B25 35B40 35J65 47J30 PDF BibTeX XML Cite \textit{Z. Guo}, J. Partial Differ. Equations 14, No. 4, 365--383 (2001; Zbl 1433.35126)
Denisov, I. V. The corner boundary layer in nonlinear singularly perturbed elliptic equations. (English. Russian original) Zbl 1114.35304 Comput. Math. Math. Phys. 41, No. 3, 362-378 (2001); translation from Zh. Vychisl. Mat. Mat. Fiz. 41, No. 3, 390-406 (2001). Reviewer: Alexey Tret’yakov (Siedlce) MSC: 35B25 35C20 35J60 35J65 PDF BibTeX XML Cite \textit{I. V. Denisov}, Comput. Math. Math. Phys. 41, No. 3, 362--378 (2001; Zbl 1114.35304); translation from Zh. Vychisl. Mat. Mat. Fiz. 41, No. 3, 390--406 (2001)
Hoàng, Viet Hà Random homogenization and singular perturbations in perforated domains. (English) Zbl 0979.35018 Commun. Math. Phys. 214, No. 2, 411-428 (2000). Reviewer: Messoud Efendiev (Berlin) MSC: 35B27 35B25 PDF BibTeX XML Cite \textit{V. H. Hoàng}, Commun. Math. Phys. 214, No. 2, 411--428 (2000; Zbl 0979.35018) Full Text: DOI
Yu, Jianning The existence of explosive solutions for a class of semilinear elliptic equations with a gradient term. II. (Chinese. English summary) Zbl 0989.35057 J. Lanzhou Univ., Nat. Sci. 36, No. 2, 9-12 (2000). MSC: 35J65 35B05 35R05 PDF BibTeX XML Cite \textit{J. Yu}, J. Lanzhou Univ., Nat. Sci. 36, No. 2, 9--12 (2000; Zbl 0989.35057)
Chandler-Wilde, Simon N.; Ross, Chris R.; Zhang, Bo Scattering by infinite one-dimensional rough surfaces. (English) Zbl 0963.78014 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455, No. 1990, 3767-3787 (1999). Reviewer: B.D.Sleeman (Leeds) MSC: 78A45 45A05 35P25 PDF BibTeX XML Cite \textit{S. N. Chandler-Wilde} et al., Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455, No. 1990, 3767--3787 (1999; Zbl 0963.78014) Full Text: DOI
Shishkin, G. I. Approximation of singularly perturbed elliptic equations with convective terms in the case of a flow impinging on an impermeable wall. (English. Russian original) Zbl 0970.35018 Comput. Math. Math. Phys. 38, No. 11, 1768-1782 (1998); translation from Zh. Vychisl. Mat. Mat. Fiz. 38, No. 11, 1844-1859 (1998). Reviewer: Alexey Tret’yakov (Siedlce) MSC: 35J25 35B25 65N12 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Comput. Math. Math. Phys. 38, No. 11, 1768--1782 (1998; Zbl 0970.35018); translation from Zh. Vychisl. Mat. Mat. Fiz. 38, No. 11, 1844--1859 (1998)
Li, Yanyan; Nirenberg, Louis The Dirichlet problem for singularly perturbed elliptic equations. (English) Zbl 0933.35083 Commun. Pure Appl. Math. 51, No. 11-12, 1445-1490 (1998). Reviewer: Dimitar Kolev (Sofia) MSC: 35J70 35B25 35B38 PDF BibTeX XML Cite \textit{Y. Li} and \textit{L. Nirenberg}, Commun. Pure Appl. Math. 51, No. 11--12, 1445--1490 (1998; Zbl 0933.35083) Full Text: DOI
Dermenjian, Yves; Durand, Marc; Iftimie, Viorel Spectral analysis of an acoustic multistratified perturbed cylinder. (English) Zbl 0907.47046 Commun. Partial Differ. Equations 23, No. 1-2, 141-169 (1998). MSC: 47F05 35P05 47A10 47A55 47B25 PDF BibTeX XML Cite \textit{Y. Dermenjian} et al., Commun. Partial Differ. Equations 23, No. 1--2, 141--169 (1998; Zbl 0907.47046)
Hsu, Tsing-san; Wang, Hwai-chiuan A perturbation result of semilinear elliptic equations in exterior strip domains. (English) Zbl 0884.35038 Proc. R. Soc. Edinb., Sect. A 127, No. 5, 983-1004 (1997). Reviewer: L.A.Fernandez (Santander) MSC: 35J65 35B20 PDF BibTeX XML Cite \textit{T.-s. Hsu} and \textit{H.-c. Wang}, Proc. R. Soc. Edinb., Sect. A, Math. 127, No. 5, 983--1004 (1997; Zbl 0884.35038) Full Text: DOI
Zhang, Hanlin The corner solution for a quasilinear differential equation with two parameters. (English) Zbl 0882.34060 Appl. Math. Mech., Engl. Ed. 18, No. 5, 503-510 (1997). Reviewer: K.R.Schneider (Berlin) MSC: 34E20 34B15 PDF BibTeX XML Cite \textit{H. Zhang}, Appl. Math. Mech., Engl. Ed. 18, No. 5, 503--510 (1997; Zbl 0882.34060) Full Text: DOI
Zhu, Huai-Ping The Dirichlet problem for a singular singularly perturbed quasilinear second order differential system. (English) Zbl 0951.34036 J. Math. Anal. Appl. 210, No. 1, 308-336 (1997). MSC: 34E05 34A09 34E15 PDF BibTeX XML Cite \textit{H.-P. Zhu}, J. Math. Anal. Appl. 210, No. 1, 308--336 (1997; Zbl 0951.34036) Full Text: DOI
Wang, Zhiming; Lin, Wuzhong The Dirichlet problem for a quasilinear singularly perturbed second order system. (English) Zbl 0860.34026 J. Math. Anal. Appl. 201, No. 3, 897-910 (1996). Reviewer: V.V.Strygin (Voronezh) MSC: 34E15 34B15 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{W. Lin}, J. Math. Anal. Appl. 201, No. 3, 897--910 (1996; Zbl 0860.34026) Full Text: DOI
Shishkin, G. I. Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations. (English. Russian original) Zbl 0852.65071 Comput. Math. Math. Phys. 35, No. 4, 429-446 (1995); translation from Zh. Vychisl. Mat. Mat. Fiz. 35, No. 4, 542-564 (1995). MSC: 65M06 35K15 35M10 35J25 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Comput. Math. Math. Phys. 35, No. 4, 429--446 (1995; Zbl 0852.65071); translation from Zh. Vychisl. Mat. Mat. Fiz. 35, No. 4, 542--564 (1995)
Wang, Zhiming; Lin, Wuzhong The Dirichlet problem for a quasilinear singularly perturbed second order system. (English) Zbl 0829.34043 Ann. Differ. Equations 10, No. 5, Spec. Iss., 138-141 (1995). MSC: 34E15 34B15 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{W. Lin}, Ann. Differ. Equations 10, No. 5, 138--141 (1995; Zbl 0829.34043)
Shishkin, G. I. Lattice approximation of singularly perturbed degenerate elliptic equations. (English. Russian original) Zbl 0815.65109 Comput. Math. Math. Phys. 33, No. 4, 493-509 (1993); translation from Zh. Vychisl. Mat. Mat. Fiz. 33, No. 4, 541-560 (1993). Reviewer: E.D’yakonov (Moskva) MSC: 65N06 65N12 35J25 35B25 35J70 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Comput. Math. Math. Phys. 33, No. 4, 541--560 (1993; Zbl 0815.65109); translation from Zh. Vychisl. Mat. Mat. Fiz. 33, No. 4, 541--560 (1993)
Zhu, Huaiping; Lin, Wuzhong Conditionally stable Dirichlet problem for quasilinear singularly perturbed second order system. (Chinese. English summary) Zbl 0773.34044 J. East China Norm. Univ., Nat. Sci. Ed. 1992, No. 4, 15-24 (1992). MSC: 34E15 34A12 34A25 PDF BibTeX XML Cite \textit{H. Zhu} and \textit{W. Lin}, J. East China Norm. Univ., Nat. Sci. Ed. 1992, No. 4, 15--24 (1992; Zbl 0773.34044)
Lube, G.; Weiss, D. Streamline diffusion finite element method for quasilinear elliptic problems. (English) Zbl 0736.76031 Z. Angew. Math. Mech. 71, No. 6, T671-T674 (1991). MSC: 76M10 76R50 65N30 PDF BibTeX XML Cite \textit{G. Lube} and \textit{D. Weiss}, Z. Angew. Math. Mech. 71, No. 6, T671--T674 (1991; Zbl 0736.76031)
Jeffries, John S.; Smith, Donald R. The Dirichlet problem for a quasilinear singularly perturbed second order system. (English) Zbl 0806.34047 J. Math. Anal. Appl. 156, No. 1, 1-22 (1991). MSC: 34E15 34B15 PDF BibTeX XML Cite \textit{J. S. Jeffries} and \textit{D. R. Smith}, J. Math. Anal. Appl. 156, No. 1, 1--22 (1991; Zbl 0806.34047) Full Text: DOI
Lin, Ping A uniformly convergent difference scheme for a semilinear singularly perturbed elliptic equation in a curved domain. (Chinese. English summary) Zbl 0727.65083 Numer. Math., Nanjing 12, No. 2, 110-123 (1990). MSC: 65N12 65N06 65H10 65N22 35J65 35B25 PDF BibTeX XML Cite \textit{P. Lin}, Numer. Math., Nanjing 12, No. 2, 110--123 (1990; Zbl 0727.65083)
Shishkin, G. I. Approximation of the solutions of singularly perturbed boundary value problems with a parabolic boundary layer. (English. Russian original) Zbl 0709.65073 U.S.S.R. Comput. Math. Math. Phys. 29, No. 4, 1-10 (1989); translation from Zh. Vychisl. Mat. Mat. Fiz. 29, No. 7, 963-977 (1989). MSC: 65N12 65N06 35K20 35B25 PDF BibTeX XML Cite \textit{G. I. Shishkin}, U.S.S.R. Comput. Math. Math. Phys. 29, No. 4, 1--10 (1989; Zbl 0709.65073); translation from Zh. Vychisl. Mat. Mat. Fiz. 29, No. 7, 963--977 (1989) Full Text: DOI
Shishkin, G. I. Approximation of the solutions of singularly perturbed boundary value problems with parabolic boundary layer. (Russian) Zbl 0683.65086 Zh. Vychisl. Mat. Mat. Fiz. 29, No. 7, 963-977 (1989). Reviewer: M.Z.Qin MSC: 65N12 65N06 35K20 35B25 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Zh. Vychisl. Mat. Mat. Fiz. 29, No. 7, 963--977 (1989; Zbl 0683.65086)
Brasche, Johannes Friedemann Perturbations of self-adjoint operators supported by null sets. (English) Zbl 0691.47016 Bielefeld: Univ., Fak. f. Math., Diss. ix, 75 p. (1988). Reviewer: M.Demuth MSC: 47A55 81Q15 47A20 PDF BibTeX XML Cite \textit{J. F. Brasche}, Perturbations of self-adjoint operators supported by null sets. Bielefeld: Univ., Fak. f. Math. (1988; Zbl 0691.47016)
Shishkin, G. I. Approximation of solutions of singularly perturbed boundary-value problems with a corner boundary layer. (English. Russian original) Zbl 0663.65094 U.S.S.R. Comput. Math. Math. Phys. 27, No. 5, 54-63 (1987); translation from Zh. Vychisl. Mat. Mat. Fiz. 27, No. 9, 1360-1374 (1987). MSC: 65N12 65N15 35K10 35J25 35B25 PDF BibTeX XML Cite \textit{G. I. Shishkin}, U.S.S.R. Comput. Math. Math. Phys. 27, No. 5, 54--63 (1987; Zbl 0663.65094); translation from Zh. Vychisl. Mat. Mat. Fiz. 27, No. 9, 1360--1374 (1987) Full Text: DOI
Shishkin, G. I. Approximation of solutions of singularly perturbed boundary value problems with angular boundary layer. (Russian) Zbl 0634.65079 Zh. Vychisl. Mat. Mat. Fiz. 27, No. 9, 1360-1374 (1987). Reviewer: E.V.Nicolau MSC: 65N12 65N15 35J25 35B25 35K10 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Zh. Vychisl. Mat. Mat. Fiz. 27, No. 9, 1360--1374 (1987; Zbl 0634.65079)
Kielhöfer, H.; Kötzner, P. Stable periods of a semilinear wave equation and bifurcation of periodic solutions. (English) Zbl 0629.35013 Z. Angew. Math. Phys. 38, 204-212 (1987). Reviewer: M.Kučera MSC: 35B32 35L70 35L20 35B20 PDF BibTeX XML Cite \textit{H. Kielhöfer} and \textit{P. Kötzner}, Z. Angew. Math. Phys. 38, 204--212 (1987; Zbl 0629.35013) Full Text: DOI
DeSanti, Albert J. Perturbed quasilinear Dirichlet problems with isolated turning points. (English) Zbl 0628.35039 Commun. Partial Differ. Equations 12, 223-242 (1987). Reviewer: F.Tomi MSC: 35J65 35B25 35J25 35B30 PDF BibTeX XML Cite \textit{A. J. DeSanti}, Commun. Partial Differ. Equations 12, 223--242 (1987; Zbl 0628.35039) Full Text: DOI
Sechin, A. Yu. On the approximate solution of two-dimensional singularly perturbed convection-diffusion equations. (English) Zbl 0825.65074 Sov. J. Numer. Anal. Math. Model. 1, No. 2, 101-119 (1986). MSC: 65N06 65N12 35J25 35B25 PDF BibTeX XML Cite \textit{A. Yu. Sechin}, Sov. J. Numer. Anal. Math. Model. 1, No. 2, 101--119 (1986; Zbl 0825.65074)
López de Silanes, M. C.; Lisbona, F.; Pétriz, F. Collocation for a class of singularly perturbed problems. (Spanish) Zbl 0561.34038 Differential equations and applications, Proc. 7th Congr., Granada/Spain 1984, 233-238 (1985). Reviewer: F.A.Howes MSC: 34E15 34D15 PDF BibTeX XML
Howes, F. A. Shock layer behavior in perturbed second-order systems. (English) Zbl 0594.34058 Nonlinear problems in control and fluid dynamics, Proc. Conf., Berkeley/Calif. 1983, Lie Groups, Hist. Front. Appl., Ser. B 2, 251-261 (1984). MSC: 34E15 34B15 PDF BibTeX XML
Barashkov, A. S. A regular expansion of solutions of singularly perturbed equations. (English. Russian original) Zbl 0574.35027 Sov. Math. 28, No. 9, 6-11 (1984); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1984, No. 9(268), 6-9 (1984). Reviewer: F.A.Howes MSC: 35J25 35B25 35B40 PDF BibTeX XML Cite \textit{A. S. Barashkov}, Sov. Math. 28, No. 9, 6--11 (1984; Zbl 0574.35027); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1984, No. 9(268), 6--9 (1984)
Lin, Pengcheng; Liu, Fawang The necessary and sufficient condition of uniformly convergent difference schemes for the elliptic-parabolic partial differential equation with a small parameter. (English) Zbl 0573.65075 Appl. Math. Mech., Engl. Ed. 5, 1047-1055 (1984). Reviewer: R.D.Lazarov MSC: 65N12 35M99 PDF BibTeX XML Cite \textit{P. Lin} and \textit{F. Liu}, Appl. Math. Mech., Engl. Ed. 5, 1047--1055 (1984; Zbl 0573.65075) Full Text: DOI
Chang, K. W.; Howes, F. A. Nonlinear singular perturbation phenomena: theory and applications. (English) Zbl 0559.34013 Applied Mathematical Sciences, 56. New York etc.: Springer-Verlag. viii, 180 p. DM 58.00 (1984). Reviewer: Lynn Erbe (Edmonton) MSC: 34B15 34-02 34E05 34A34 34E15 PDF BibTeX XML
Howes, F. A. Boundary layer behavior in perturbed second-order systems. (English) Zbl 0558.34046 J. Math. Anal. Appl. 104, 467-476 (1984). MSC: 34E15 34D15 PDF BibTeX XML Cite \textit{F. A. Howes}, J. Math. Anal. Appl. 104, 467--476 (1984; Zbl 0558.34046) Full Text: DOI
Laver, A. G.; Sidenko, A. R. Homogenization of the time-periodic boundary value problem for a singularly perturbed parabolic equation. (Russian) Zbl 0534.35053 Partial differential equations in applied problems, Collect. sci. Works, Kiev 1982, 48-53 (1982). Reviewer: J.Appell MSC: 35K55 35B25 35B40 PDF BibTeX XML
Maeda, Fumi-Yuki Dirichlet problem for a semi-linearly perturbed structure of a harmonic space. (English) Zbl 0496.31008 Hiroshima Math. J. 12, 103-113 (1982). MSC: 31D05 35J60 PDF BibTeX XML Cite \textit{F.-Y. Maeda}, Hiroshima Math. J. 12, 103--113 (1982; Zbl 0496.31008)
Howes, F. A. Some singularly perturbed nonlinear boundary value problems of elliptic type. (English) Zbl 0444.35004 Nonlinear partial differential equations in engineering and applied science, Proc. Conf., Kingston 1979, Lect. Notes Pure Appl. Math. 54, 151-166 (1980). MSC: 35B25 35J65 PDF BibTeX XML