Gelvin, Matthew; Yalçın, Ergün Dade groups for finite groups and dimension functions. (English) Zbl 07332169 J. Algebra 576, 146-196 (2021). MSC: 19A22 20C20 57S17 PDF BibTeX XML Cite \textit{M. Gelvin} and \textit{E. Yalçın}, J. Algebra 576, 146--196 (2021; Zbl 07332169) Full Text: DOI
Ringel, Claus Michael The finitistic dimension of a Nakayama algebra. (English) Zbl 07332168 J. Algebra 576, 95-145 (2021). MSC: 16G10 16G20 16G70 16E05 16E10 16E65 PDF BibTeX XML Cite \textit{C. M. Ringel}, J. Algebra 576, 95--145 (2021; Zbl 07332168) Full Text: DOI
Chan, Aaron; Wong, William Irreducible representations of the symmetric groups from slash homologies of \(p\)-complexes. (English) Zbl 07329423 Algebr. Comb. 4, No. 1, 125-144 (2021). MSC: 20C30 PDF BibTeX XML Cite \textit{A. Chan} and \textit{W. Wong}, Algebr. Comb. 4, No. 1, 125--144 (2021; Zbl 07329423) Full Text: DOI
Mutlu, Gökhan On the quotient quantum graph with respect to the regular representation. (English) Zbl 07327309 Commun. Pure Appl. Anal. 20, No. 2, 885-902 (2021). MSC: 58J53 20C30 34L05 35P05 81Q50 PDF BibTeX XML Cite \textit{G. Mutlu}, Commun. Pure Appl. Anal. 20, No. 2, 885--902 (2021; Zbl 07327309) Full Text: DOI
Gill, Nick; Hughes, Sam The character table of a sharply 5-transitive subgroup of the alternating group of degree 12. (English) Zbl 07324034 Int. J. Group Theory 10, No. 1, 11-30 (2021). MSC: 20C15 20B20 20C34 01A60 PDF BibTeX XML Cite \textit{N. Gill} and \textit{S. Hughes}, Int. J. Group Theory 10, No. 1, 11--30 (2021; Zbl 07324034) Full Text: DOI
Koshitani, Shigeo; Lassueur, Caroline Trivial source characters in blocks with cyclic defect groups. (English) Zbl 07318822 J. Algebra 574, 375-408 (2021). MSC: 20C20 PDF BibTeX XML Cite \textit{S. Koshitani} and \textit{C. Lassueur}, J. Algebra 574, 375--408 (2021; Zbl 07318822) Full Text: DOI
Lukina, Olga Galois groups and Cantor actions. (English) Zbl 07313191 Trans. Am. Math. Soc. 374, No. 3, 1579-1621 (2021). MSC: 37B02 37B05 37P05 37C85 20E08 12F10 22A22 20E18 11R09 11R32 PDF BibTeX XML Cite \textit{O. Lukina}, Trans. Am. Math. Soc. 374, No. 3, 1579--1621 (2021; Zbl 07313191) Full Text: DOI
Alecu, Bogdan; Atminas, Aistis; Lozin, Vadim Graph functionality. (English) Zbl 07305042 J. Comb. Theory, Ser. B 147, 139-158 (2021). MSC: 05C62 05C75 PDF BibTeX XML Cite \textit{B. Alecu} et al., J. Comb. Theory, Ser. B 147, 139--158 (2021; Zbl 07305042) Full Text: DOI
Jiang, Yu On the symmetric and exterior powers of Young permutation modules. (English) Zbl 07282611 J. Algebra 567, 660-704 (2021). Reviewer: John D. Dixon (Ottawa) MSC: 20C30 20C20 PDF BibTeX XML Cite \textit{Y. Jiang}, J. Algebra 567, 660--704 (2021; Zbl 07282611) Full Text: DOI
Dong, Xiaoyuan; Ma, Dengju The crossing number of the bipartite permutation graph. (Chinese. English summary) Zbl 07295542 J. Nat. Sci. Heilongjiang Univ. 37, No. 3, 314-317 (2020). MSC: 05C10 05C62 PDF BibTeX XML Cite \textit{X. Dong} and \textit{D. Ma}, J. Nat. Sci. Heilongjiang Univ. 37, No. 3, 314--317 (2020; Zbl 07295542) Full Text: DOI
Prins, Abraham Love; Monaledi, Ramotjaki Lucky; Fray, Richard Llewellyn On a maximal subgroup \((2^9:(L_3(4)):3\) of the automorphism group \(U_6(2):3\) of \(U_6(2)\). (English) Zbl 07274483 Afr. Mat. 31, No. 7-8, 1311-1336 (2020). MSC: 20C15 20C40 PDF BibTeX XML Cite \textit{A. L. Prins} et al., Afr. Mat. 31, No. 7--8, 1311--1336 (2020; Zbl 07274483) Full Text: DOI
Kornyak, V. V. An algorithm for constructing irreducible decompositions of permutation representations of wreath products of finite groups. (English. Russian original) Zbl 1451.81269 J. Math. Sci., New York 251, No. 3, 375-394 (2020); translation from Zap. Nauchn. Semin. POMI 485, 107-139 (2019). MSC: 81R05 20C35 20B05 20E22 47A15 81V72 81-08 20-08 PDF BibTeX XML Cite \textit{V. V. Kornyak}, J. Math. Sci., New York 251, No. 3, 375--394 (2020; Zbl 1451.81269); translation from Zap. Nauchn. Semin. POMI 485, 107--139 (2019) Full Text: DOI
Kornyak, V. V. Computation of irreducible decompositions of permutation representations of wreath products of finite groups. (English. Russian original) Zbl 1450.81070 Comput. Math. Math. Phys. 60, No. 1, 90-101 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 96-108 (2020). MSC: 81V72 20B05 20C30 20E22 81R05 68W30 81-08 PDF BibTeX XML Cite \textit{V. V. Kornyak}, Comput. Math. Math. Phys. 60, No. 1, 90--101 (2020; Zbl 1450.81070); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 1, 96--108 (2020) Full Text: DOI
MacQuarrie, John William; Zalesskii, Pavel A characterization of permutation modules extending a theorem of Weiss. (English) Zbl 07258093 Doc. Math. 25, 1159-1169 (2020). MSC: 20C11 PDF BibTeX XML Cite \textit{J. W. MacQuarrie} and \textit{P. Zalesskii}, Doc. Math. 25, 1159--1169 (2020; Zbl 07258093) Full Text: DOI
Balmer, Paul; Benson, Dave Resolutions by permutation modules. (English) Zbl 07254618 Arch. Math. 115, No. 5, 495-498 (2020). MSC: 20C20 PDF BibTeX XML Cite \textit{P. Balmer} and \textit{D. Benson}, Arch. Math. 115, No. 5, 495--498 (2020; Zbl 07254618) Full Text: DOI
Macedo Lins de Araujo, Paula Bivariate representation and conjugacy class zeta functions associated to unipotent group schemes. II: Groups of type \(F\), \(G\), and \(H\). (English) Zbl 07252753 Int. J. Algebra Comput. 30, No. 5, 931-975 (2020). MSC: 20D15 22E55 20E45 14G10 11M41 05A15 05E15 PDF BibTeX XML Cite \textit{P. Macedo Lins de Araujo}, Int. J. Algebra Comput. 30, No. 5, 931--975 (2020; Zbl 07252753) Full Text: DOI
Halasi, Zoltán; Maróti, Attila; Navarro, Gabriel; Tiep, Pham Huu Irreducible induction and nilpotent subgroups in finite groups. (English) Zbl 07239065 J. Algebra 561, 200-214 (2020). MSC: 20C15 20C33 20B05 PDF BibTeX XML Cite \textit{Z. Halasi} et al., J. Algebra 561, 200--214 (2020; Zbl 07239065) Full Text: DOI
Józiak, Paweł Quantum increasing sequences generate quantum permutation groups. (English) Zbl 1450.46054 Glasg. Math. J. 62, No. 3, 631-639 (2020). Reviewer: Jinsong Wu (Harbin) MSC: 46L67 20G42 81R50 16T20 PDF BibTeX XML Cite \textit{P. Józiak}, Glasg. Math. J. 62, No. 3, 631--639 (2020; Zbl 1450.46054) Full Text: DOI
Wildon, Mark Permutation groups containing a regular abelian subgroup: the tangled history of two mistakes of Burnside. (English) Zbl 07235615 Math. Proc. Camb. Philos. Soc. 168, No. 3, 613-633 (2020). MSC: 20B05 20B15 20C15 PDF BibTeX XML Cite \textit{M. Wildon}, Math. Proc. Camb. Philos. Soc. 168, No. 3, 613--633 (2020; Zbl 07235615) Full Text: DOI
Fujita, Shinsaku Symmetry-itemized enumeration of compounds derived from different \(\boldsymbol{I}_h\)-skeletons by means of combined-permutation representations and newly-developed GAP functions. (English) Zbl 1441.92053 J. Math. Chem. 58, No. 7, 1364-1408 (2020). MSC: 92E10 PDF BibTeX XML Cite \textit{S. Fujita}, J. Math. Chem. 58, No. 7, 1364--1408 (2020; Zbl 1441.92053) Full Text: DOI
Gao, Rui; Liu, Heguo; Zhou, Feng Symmetry classes of tensors associated with certain groups. (English) Zbl 1441.15018 Linear Algebra Appl. 602, 240-251 (2020). MSC: 15A69 20C30 15A72 PDF BibTeX XML Cite \textit{R. Gao} et al., Linear Algebra Appl. 602, 240--251 (2020; Zbl 1441.15018) Full Text: DOI
Teh, Wen Chean; Ng, Zhen Chuan; Javaid, Muhammad; Chern, Zi Jing Parikh word representability of bipartite permutation graphs. (English) Zbl 1441.05165 Discrete Appl. Math. 282, 208-221 (2020). MSC: 05C62 05A05 05C45 05C38 68R15 PDF BibTeX XML Cite \textit{W. C. Teh} et al., Discrete Appl. Math. 282, 208--221 (2020; Zbl 1441.05165) Full Text: DOI
Paul, Inga Permutation modules for cellularly stratified algebras. (English) Zbl 07206695 J. Pure Appl. Algebra 224, No. 11, Article ID 106412, 32 p. (2020). MSC: 16G10 20C30 20C08 05E10 16D40 PDF BibTeX XML Cite \textit{I. Paul}, J. Pure Appl. Algebra 224, No. 11, Article ID 106412, 32 p. (2020; Zbl 07206695) Full Text: DOI
Rouquier, Raphaël; Wang, Lizhong; Yang, Jinwei \(p\)-indecomposable decomposition and Brauer morphisms for modules. (English) Zbl 07203076 J. Algebra 558, 646-659 (2020). MSC: 20C20 PDF BibTeX XML Cite \textit{R. Rouquier} et al., J. Algebra 558, 646--659 (2020; Zbl 07203076) Full Text: DOI
Staš, Michal On the crossing numbers of join products of five graphs of order six with the discrete graph. (English) Zbl 1437.05205 Opusc. Math. 40, No. 3, 383-397 (2020). MSC: 05C76 05C62 05C10 05C38 PDF BibTeX XML Cite \textit{M. Staš}, Opusc. Math. 40, No. 3, 383--397 (2020; Zbl 1437.05205) Full Text: DOI
Gutik, Oleg; Mokrytskyi, Taras The monoid of order isomorphisms between principal filters of \(\mathbb{N}^n\). (English) Zbl 07189607 Eur. J. Math. 6, No. 1, 14-36 (2020). MSC: 20M18 20M20 22A15 54D40 54D45 54H10 PDF BibTeX XML Cite \textit{O. Gutik} and \textit{T. Mokrytskyi}, Eur. J. Math. 6, No. 1, 14--36 (2020; Zbl 07189607) Full Text: DOI
Sun, Hao Degree of the \(W\)-operator and noncrossing partitions. (English) Zbl 1436.05007 Bull. Aust. Math. Soc. 101, No. 2, 186-200 (2020). MSC: 05A05 05E05 05A18 22D20 PDF BibTeX XML Cite \textit{H. Sun}, Bull. Aust. Math. Soc. 101, No. 2, 186--200 (2020; Zbl 1436.05007) Full Text: DOI
Arikan, Ahmet; Arikan, Aynur; Zitouni, Amel On finitary series of groups represented as permutation or linear groups. (English) Zbl 07182947 Commun. Algebra 48, No. 3, 1356-1370 (2020). MSC: 20B07 20C32 20E25 20C99 PDF BibTeX XML Cite \textit{A. Arikan} et al., Commun. Algebra 48, No. 3, 1356--1370 (2020; Zbl 07182947) Full Text: DOI
Brannan, Michael; Chirvasitu, Alexandru; Freslon, Amaury Topological generation and matrix models for quantum reflection groups. (English) Zbl 07167266 Adv. Math. 363, Article ID 106982, 31 p. (2020). MSC: 20G42 46L52 16T20 PDF BibTeX XML Cite \textit{M. Brannan} et al., Adv. Math. 363, Article ID 106982, 31 p. (2020; Zbl 07167266) Full Text: DOI
Iverson, Joseph W.; Jasper, John; Mixon, Dustin G. Optimal line packings from finite group actions. (English) Zbl 07154391 Forum Math. Sigma 8, Paper No. e6, 40 p. (2020). Reviewer: Frieder Ladisch (Rostock) MSC: 20B99 42C15 52C99 20C15 94C30 PDF BibTeX XML Cite \textit{J. W. Iverson} et al., Forum Math. Sigma 8, Paper No. e6, 40 p. (2020; Zbl 07154391) Full Text: DOI arXiv
Hwang, Hsien-Kuei; Chern, Hua-Huai; Duh, Guan-Huei An asymptotic distribution theory for Eulerian recurrences with applications. (English) Zbl 1440.05026 Adv. Appl. Math. 112, Article ID 101960, 125 p. (2020). MSC: 05A15 05A05 05A10 05E16 11B83 30C10 30E15 60F05 PDF BibTeX XML Cite \textit{H.-K. Hwang} et al., Adv. Appl. Math. 112, Article ID 101960, 125 p. (2020; Zbl 1440.05026) Full Text: DOI arXiv
Hoshi, Akinari; Kang, Ming-chang; Yamasaki, Aiichi Degree three unramified cohomology groups and Noether’s problem for groups of order 243. (English) Zbl 1434.13010 J. Algebra 544, 262-301 (2020). MSC: 13A50 14E08 20J06 14F22 20C10 PDF BibTeX XML Cite \textit{A. Hoshi} et al., J. Algebra 544, 262--301 (2020; Zbl 1434.13010) Full Text: DOI arXiv
Kochhar, Jasdeep Endomorphism algebras of 2-row permutation modules in characteristic 3. (English) Zbl 07128732 J. Algebra 542, 190-214 (2020). MSC: 20C20 20C32 PDF BibTeX XML Cite \textit{J. Kochhar}, J. Algebra 542, 190--214 (2020; Zbl 07128732) Full Text: DOI
Bhore, Sujoy; Jana, Satyabrata; Pandit, Supantha; Roy, Sasanka Balanced connected subgraph problem in geometric intersection graphs. (English) Zbl 1434.68347 Li, Yingshu (ed.) et al., Combinatorial optimization and applications. 13th international conference, COCOA 2019, Xiamen, China, December 13–15, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11949, 56-68 (2019). MSC: 68R10 05C15 05C62 68Q17 68W40 PDF BibTeX XML Cite \textit{S. Bhore} et al., Lect. Notes Comput. Sci. 11949, 56--68 (2019; Zbl 1434.68347) Full Text: DOI
Skresanov, S. V. Counterexamples to two conjectures in the Kourovka notebook. (English. Russian original) Zbl 07175623 Algebra Logic 58, No. 3, 249-253 (2019); translation from Algebra Logika 58, No. 3, 370-375 (2019). MSC: 20B30 20C30 20C15 PDF BibTeX XML Cite \textit{S. V. Skresanov}, Algebra Logic 58, No. 3, 249--253 (2019; Zbl 07175623); translation from Algebra Logika 58, No. 3, 370--375 (2019) Full Text: DOI
Liebeck, Martin W.; Praeger, Cheryl E.; Saxl, Jan The classification of \(\frac{3}{2}\)-transitive permutation groups and \(\frac{1}{2}\)-transitive linear groups. (English) Zbl 07122695 Proc. Am. Math. Soc. 147, No. 12, 5023-5037 (2019). MSC: 20B05 20B15 20B20 20C15 PDF BibTeX XML Cite \textit{M. W. Liebeck} et al., Proc. Am. Math. Soc. 147, No. 12, 5023--5037 (2019; Zbl 07122695) Full Text: DOI
Bartel, Alex; Spencer, Matthew Relations between permutation representations in positive characteristic. (English) Zbl 1448.19001 Bull. Lond. Math. Soc. 51, No. 2, 293-308 (2019). MSC: 19A22 20B10 20C20 20B05 PDF BibTeX XML Cite \textit{A. Bartel} and \textit{M. Spencer}, Bull. Lond. Math. Soc. 51, No. 2, 293--308 (2019; Zbl 1448.19001) Full Text: DOI
Barker, Laurence An inversion formula for the primitive idempotents of the trivial source algebra. (English) Zbl 07094356 J. Pure Appl. Algebra 223, No. 12, 5444-5454 (2019). MSC: 20C20 19A22 PDF BibTeX XML Cite \textit{L. Barker}, J. Pure Appl. Algebra 223, No. 12, 5444--5454 (2019; Zbl 07094356) Full Text: DOI arXiv
Deng, Bangming; Du, Jie; Yang, Guiyu Slim cyclotomic \(q\)-Schur algebras. (English) Zbl 07087570 J. Algebra 535, 365-406 (2019). MSC: 20C08 20G07 20G05 20C33 PDF BibTeX XML Cite \textit{B. Deng} et al., J. Algebra 535, 365--406 (2019; Zbl 07087570) Full Text: DOI arXiv
Staš, Michal Determining crossing number of join of the discrete graph with two symmetric graphs of order five. (English) Zbl 1416.05194 Symmetry 11, No. 2, Paper No. 123, 9 p. (2019). MSC: 05C62 05C76 PDF BibTeX XML Cite \textit{M. Staš}, Symmetry 11, No. 2, Paper No. 123, 9 p. (2019; Zbl 1416.05194) Full Text: DOI
Pak, Igor; Panova, Greta; Yeliussizov, Damir Bounds on the largest Kronecker and induced multiplicities of finite groups. (English) Zbl 07072614 Commun. Algebra 47, No. 8, 3264-3279 (2019). MSC: 20B05 20Cxx 05E10 05E15 PDF BibTeX XML Cite \textit{I. Pak} et al., Commun. Algebra 47, No. 8, 3264--3279 (2019; Zbl 07072614) Full Text: DOI arXiv
Mazza, Nadia Endotrivial modules. (English) Zbl 1447.20003 SpringerBriefs in Mathematics. Cham: Springer (ISBN 978-3-030-18155-0/pbk; 978-3-030-18156-7/ebook). x, 120 p. (2019). Reviewer: Burkhard Külshammer (Jena) MSC: 20-02 20C20 20C05 20C30 20C33 20C34 20J05 19A22 PDF BibTeX XML Cite \textit{N. Mazza}, Endotrivial modules. Cham: Springer (2019; Zbl 1447.20003) Full Text: DOI
Lassueur, Caroline; Thévenaz, Jacques On the lifting of the Dade group. (English) Zbl 1441.20007 J. Group Theory 22, No. 3, 441-451 (2019). Reviewer: Hankyung Ko (Uppsala) MSC: 20C20 PDF BibTeX XML Cite \textit{C. Lassueur} and \textit{J. Thévenaz}, J. Group Theory 22, No. 3, 441--451 (2019; Zbl 1441.20007) Full Text: DOI arXiv
Valadkhan, Payam List matrix partitions of graphs representing geometric configurations. (English) Zbl 1409.05165 Discrete Appl. Math. 260, 237-243 (2019). MSC: 05C70 05C62 PDF BibTeX XML Cite \textit{P. Valadkhan}, Discrete Appl. Math. 260, 237--243 (2019; Zbl 1409.05165) Full Text: DOI
Wiggins, Giulian Presentations of categories of modules using the Cautis-Kamnitzer-Morrison principle. (English) Zbl 07047431 J. Comb. Algebra 3, No. 1, 71-112 (2019). MSC: 20G05 17B10 20C30 20G43 PDF BibTeX XML Cite \textit{G. Wiggins}, J. Comb. Algebra 3, No. 1, 71--112 (2019; Zbl 07047431) Full Text: DOI arXiv
Guralnick, Robert M.; Liebeck, Martin W. Permutation representations of nonsplit extensions involving alternating groups. (English) Zbl 1454.20013 Isr. J. Math. 229, No. 1, 181-191 (2019). Reviewer: Burkhard Külshammer (Jena) MSC: 20C30 20B05 20E22 PDF BibTeX XML Cite \textit{R. M. Guralnick} and \textit{M. W. Liebeck}, Isr. J. Math. 229, No. 1, 181--191 (2019; Zbl 1454.20013) Full Text: DOI arXiv
Lim, Kay Jin Straightening rule for an \(m^{\prime}\)-truncated polynomial ring. (English) Zbl 1403.05159 J. Algebra 522, 11-30 (2019). MSC: 05E05 05E15 20C30 20G43 PDF BibTeX XML Cite \textit{K. J. Lim}, J. Algebra 522, 11--30 (2019; Zbl 1403.05159) Full Text: DOI
Halasi, Zoltán; Liebeck, Martin W.; Maróti, Attila Base sizes of primitive groups: bounds with explicit constants. (English) Zbl 1419.20001 J. Algebra 521, 16-43 (2019). Reviewer: John D. Dixon (Ottawa) MSC: 20B15 20C15 20B40 PDF BibTeX XML Cite \textit{Z. Halasi} et al., J. Algebra 521, 16--43 (2019; Zbl 1419.20001) Full Text: DOI
Ma, Zhong-Qi Group theory for physicists. 2nd edition. (English) Zbl 1402.20001 Hackensack, NJ: World Scientific (ISBN 978-981-327-738-0/hbk; 978-981-327-796-0/pbk). 665 p. (2019). MSC: 20-01 00A06 22-01 17-01 81-01 20Bxx 20Cxx 22Exx 81V55 20C35 22E70 20H15 PDF BibTeX XML Cite \textit{Z.-Q. Ma}, Group theory for physicists. 2nd edition. Hackensack, NJ: World Scientific (2019; Zbl 1402.20001) Full Text: DOI
Wolosz, János Irreducible modules for symmetric groups that are summands of their exterior square. (English) Zbl 1450.20002 J. Algebra 518, 304-320 (2019). Reviewer: Laura Colmenarejo Hernando (Leipzig) MSC: 20C30 05E10 PDF BibTeX XML Cite \textit{J. Wolosz}, J. Algebra 518, 304--320 (2019; Zbl 1450.20002) Full Text: DOI
Berežný, Štefan; Staš, Michal Cyclic permutations and crossing numbers of join products of symmetric graph of order six. (English) Zbl 1449.05072 Carpathian J. Math. 34, No. 2, 143-155 (2018). MSC: 05C10 05C38 05C62 PDF BibTeX XML Cite \textit{Š. Berežný} and \textit{M. Staš}, Carpathian J. Math. 34, No. 2, 143--155 (2018; Zbl 1449.05072)
Lim, Dongkyu; Qi, Feng Some symmetric identities involving the Stirling polynomials under the finite symmetric group. (English) Zbl 1425.11042 Mathematics 6, No. 12, Paper No. 332, 10 p. (2018). MSC: 11B68 11B73 20C30 05A19 PDF BibTeX XML Cite \textit{D. Lim} and \textit{F. Qi}, Mathematics 6, No. 12, Paper No. 332, 10 p. (2018; Zbl 1425.11042) Full Text: DOI
Chimpinde, Trevor; Hegedűs, Pál When every irreducible character is a constituent of a primitive permutation character. (English) Zbl 1413.20002 Publ. Math. 92, No. 1-2, 217-221 (2018). MSC: 20C15 20D10 20B15 PDF BibTeX XML Cite \textit{T. Chimpinde} and \textit{P. Hegedűs}, Publ. Math. 92, No. 1--2, 217--221 (2018; Zbl 1413.20002) Full Text: DOI
Pforte, Lars The vertices of the components of the permutation module induced from parabolic groups. (English) Zbl 1404.20010 Osaka J. Math. 55, No. 4, 769-775 (2018). Reviewer: Kanat Abdukhalikov (Al Ain) MSC: 20C33 20C20 20G40 PDF BibTeX XML Cite \textit{L. Pforte}, Osaka J. Math. 55, No. 4, 769--775 (2018; Zbl 1404.20010) Full Text: Euclid
Zhu, Wei; Li, Zhiqiang; Zhang, Gaoman; Pan, Suhan; Zhang, Wei A reversible logical circuit synthesis algorithm based on decomposition of cycle representations of permutations. (English) Zbl 1447.81086 Int. J. Theor. Phys. 57, No. 8, 2466-2474 (2018). MSC: 81P68 03B30 20B05 81P65 PDF BibTeX XML Cite \textit{W. Zhu} et al., Int. J. Theor. Phys. 57, No. 8, 2466--2474 (2018; Zbl 1447.81086) Full Text: DOI
Lee, Melissa; Liebeck, Martin W. Bases for quasisimple linear groups. (English) Zbl 06973919 Algebra Number Theory 12, No. 6, 1537-1557 (2018). MSC: 20C33 20B15 20D06 PDF BibTeX XML Cite \textit{M. Lee} and \textit{M. W. Liebeck}, Algebra Number Theory 12, No. 6, 1537--1557 (2018; Zbl 06973919) Full Text: DOI
Huang, Wenlin On the group of \(p\)-endotrivial \(kG\)-modules. (English) Zbl 1413.20006 Commun. Math. Res. 34, No. 2, 106-116 (2018). MSC: 20C20 20C05 PDF BibTeX XML Cite \textit{W. Huang}, Commun. Math. Res. 34, No. 2, 106--116 (2018; Zbl 1413.20006) Full Text: DOI
Ito, Keiji Characters of finite permutation groups and Krein parameters. (English) Zbl 1402.20012 J. Algebra 514, 372-383 (2018). Reviewer: Mohammad-Reza Darafsheh (Tehran) MSC: 20C15 20B05 20C30 05E30 PDF BibTeX XML Cite \textit{K. Ito}, J. Algebra 514, 372--383 (2018; Zbl 1402.20012) Full Text: DOI
Tsilevich, N. V. On the dual complexity and spectra of some combinatorial functions. (English) Zbl 1398.05224 J. Math. Sci., New York 232, No. 2, 170-176 (2018) and Zap. Nauchn. Semin. POMI 462, 112-121 (2017). Reviewer: Allan Berele (Chicago) MSC: 05E10 20C30 PDF BibTeX XML Cite \textit{N. V. Tsilevich}, J. Math. Sci., New York 232, No. 2, 170--176 (2018; Zbl 1398.05224) Full Text: DOI
Sastry, N. S. Narasimha (ed.); Yadav, Manoj Kumar (ed.) Group theory and computation. Invited papers based on the presentations at the workshop ‘Group theory and computational methods’, Bangalore, India, November 5–14, 2016. (English) Zbl 1401.20004 Indian Statistical Institute Series. Singapore: Springer (ISBN 978-981-13-2046-0/hbk; 978-981-13-2047-7/ebook). xi, 206 p. (2018). MSC: 20-06 20-04 20C40 20B40 PDF BibTeX XML Cite \textit{N. S. N. Sastry} (ed.) and \textit{M. K. Yadav} (ed.), Group theory and computation. Invited papers based on the presentations at the workshop `Group theory and computational methods', Bangalore, India, November 5--14, 2016. Singapore: Springer (2018; Zbl 1401.20004) Full Text: DOI
Reiner, Victor; Tenner, Bridget Eileen; Yong, Alexander Poset edge densities, nearly reduced words, and barely set-valued tableaux. (English) Zbl 1391.05269 J. Comb. Theory, Ser. A 158, 66-125 (2018). MSC: 05E10 06A07 20F55 20C08 PDF BibTeX XML Cite \textit{V. Reiner} et al., J. Comb. Theory, Ser. A 158, 66--125 (2018; Zbl 1391.05269) Full Text: DOI arXiv
Józiak, Paweł Remarks on Hopf images and quantum permutation groups \(S_n^+\). (English) Zbl 1441.20033 Can. Math. Bull. 61, No. 2, 301-317 (2018). Reviewer: Gastón Andrés García (La Plata) MSC: 20G42 81R50 46L89 17B37 16T05 PDF BibTeX XML Cite \textit{P. Józiak}, Can. Math. Bull. 61, No. 2, 301--317 (2018; Zbl 1441.20033) Full Text: DOI
Duyan, Hülya; Halasi, Zoltán; Maróti, Attila A proof of Pyber’s base size conjecture. (English) Zbl 1428.20005 Adv. Math. 331, 720-747 (2018). MSC: 20B15 20C30 20-08 PDF BibTeX XML Cite \textit{H. Duyan} et al., Adv. Math. 331, 720--747 (2018; Zbl 1428.20005) Full Text: DOI
Giannelli, Eugenio; Law, Stacey On permutation characters and Sylow \(p\)-subgroups of \(\mathfrak{S}_n\). (English) Zbl 1402.20023 J. Algebra 506, 409-428 (2018). Reviewer: Leonard Jones (Shippensburg) MSC: 20C30 20C15 20B30 20D20 PDF BibTeX XML Cite \textit{E. Giannelli} and \textit{S. Law}, J. Algebra 506, 409--428 (2018; Zbl 1402.20023) Full Text: DOI arXiv
Behravesh, H.; Delfani, M. On faithful quasi-permutation representations of groups of order \(p^5\). (English) Zbl 06888579 J. Algebra Appl. 17, No. 7, Article ID 1850127, 12 p. (2018). MSC: 20B05 20C15 20D15 PDF BibTeX XML Cite \textit{H. Behravesh} and \textit{M. Delfani}, J. Algebra Appl. 17, No. 7, Article ID 1850127, 12 p. (2018; Zbl 06888579) Full Text: DOI
Baumeister, Barbara; Ladisch, Frieder A property of the Birkhoff polytope. (English) Zbl 1392.52009 Algebr. Comb. 1, No. 2, 275-281 (2018). MSC: 52B15 05E18 20B25 20C15 52B05 52B12 PDF BibTeX XML Cite \textit{B. Baumeister} and \textit{F. Ladisch}, Algebr. Comb. 1, No. 2, 275--281 (2018; Zbl 1392.52009) Full Text: DOI
Lim, Kay Jin; Tan, Kai Meng Homomorphisms from Specht modules to signed Young permutation modules. (English) Zbl 06869615 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 038, 21 p. (2018). MSC: 20C30 PDF BibTeX XML Cite \textit{K. J. Lim} and \textit{K. M. Tan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 038, 21 p. (2018; Zbl 06869615) Full Text: DOI arXiv
Jayne, Rebecca L.; Misra, Kailash C. Lattice paths, Young tableaux, and weight multiplicities. (English) Zbl 1384.05173 Ann. Comb. 22, No. 1, 147-156 (2018). MSC: 05E10 17B10 05A05 05A17 17B67 PDF BibTeX XML Cite \textit{R. L. Jayne} and \textit{K. C. Misra}, Ann. Comb. 22, No. 1, 147--156 (2018; Zbl 1384.05173) Full Text: DOI arXiv
Lassueur, Caroline; Thévenaz, Jacques Lifting endo-\(p\)-permutation modules. (English) Zbl 1427.20016 Arch. Math. 110, No. 3, 205-212 (2018). MSC: 20C20 PDF BibTeX XML Cite \textit{C. Lassueur} and \textit{J. Thévenaz}, Arch. Math. 110, No. 3, 205--212 (2018; Zbl 1427.20016) Full Text: DOI
Francis, Mathew C.; Jacob, Dalu; Jana, Satyabrata Uniquely restricted matchings in interval graphs. (English) Zbl 1378.05137 SIAM J. Discrete Math. 32, No. 1, 148-172 (2018). MSC: 05C62 05C85 PDF BibTeX XML Cite \textit{M. C. Francis} et al., SIAM J. Discrete Math. 32, No. 1, 148--172 (2018; Zbl 1378.05137) Full Text: DOI arXiv
Mascot, Nicolas Certification of modular Galois representations. (English) Zbl 1422.11127 Math. Comput. 87, No. 309, 381-423 (2018). MSC: 11F80 11F11 11S20 11Y40 20B40 20J06 PDF BibTeX XML Cite \textit{N. Mascot}, Math. Comput. 87, No. 309, 381--423 (2018; Zbl 1422.11127) Full Text: DOI arXiv
Gajjar, Kshitij; Radhakrishnan, Jaikumar Distance-preserving subgraphs of interval graphs. (English) Zbl 1442.05140 Pruhs, Kirk (ed.) et al., 25th European symposium on algorithms, ESA 2017, Vienna, Austria, September 4–6, 2017. Proceedings. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik. LIPIcs – Leibniz Int. Proc. Inform. 87, Article 39, 13 p. (2017). MSC: 05C62 05C12 05C85 PDF BibTeX XML Cite \textit{K. Gajjar} and \textit{J. Radhakrishnan}, LIPIcs -- Leibniz Int. Proc. Inform. 87, Article 39, 13 p. (2017; Zbl 1442.05140) Full Text: DOI
Niemeyer, Alice C.; Pfeiffer, Götz; Praeger, Cheryl E. On the complexity of multiplication in the Iwahori-Hecke algebra of the symmetric group. (English) Zbl 07003728 J. Symb. Comput. 80, Part 3, 817-832 (2017). MSC: 20C08 20F55 20B40 PDF BibTeX XML Cite \textit{A. C. Niemeyer} et al., J. Symb. Comput. 80, Part 3, 817--832 (2017; Zbl 07003728) Full Text: DOI
Huang, Wenlin Some results on the \(p\)-divisible \(kG\)-module. (English) Zbl 1399.20005 J. Math., Wuhan Univ. 37, No. 3, 613-620 (2017). MSC: 20C20 20C05 PDF BibTeX XML Cite \textit{W. Huang}, J. Math., Wuhan Univ. 37, No. 3, 613--620 (2017; Zbl 1399.20005) Full Text: DOI
Huang, Wenlin Some results on the \(p\)-endotrivial \(kG\)-modules. (Chinese. English summary) Zbl 1389.20007 J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 4, 424-429 (2017). MSC: 20C20 20C05 PDF BibTeX XML Cite \textit{W. Huang}, J. Hangzhou Norm. Univ., Nat. Sci. 16, No. 4, 424--429 (2017; Zbl 1389.20007) Full Text: DOI
Ponomarev, K. N. Permutation modules of profinite groups. (English. Russian original) Zbl 1398.20014 Sib. Math. J. 58, No. 4, 687-692 (2017); translation from Sib. Mat. Zh. 58, No. 4, 885-893 (2017). MSC: 20C20 20C05 20E18 16S34 PDF BibTeX XML Cite \textit{K. N. Ponomarev}, Sib. Math. J. 58, No. 4, 687--692 (2017; Zbl 1398.20014); translation from Sib. Mat. Zh. 58, No. 4, 885--893 (2017) Full Text: DOI
Huang, Fenix W. D.; Reidys, Christian M. A topological framework for signed permutations. (English) Zbl 1365.05008 Discrete Math. 340, No. 9, 2161-2182 (2017). MSC: 05A05 05C62 PDF BibTeX XML Cite \textit{F. W. D. Huang} and \textit{C. M. Reidys}, Discrete Math. 340, No. 9, 2161--2182 (2017; Zbl 1365.05008) Full Text: DOI arXiv
Anil Kumar, C. P. Permutation representations of the orbits of the automorphism group of a finite module over discrete valuation ring. (English) Zbl 1405.20048 Proc. Indian Acad. Sci., Math. Sci. 127, No. 2, 295-321 (2017). MSC: 20K01 20K30 20C15 16S50 13F30 05E15 11A07 PDF BibTeX XML Cite \textit{C. P. Anil Kumar}, Proc. Indian Acad. Sci., Math. Sci. 127, No. 2, 295--321 (2017; Zbl 1405.20048) Full Text: DOI arXiv
Ayyer, Arvind; Prasad, Amritanshu; Spallone, Steven Representations of symmetric groups with non-trivial determinant. (English) Zbl 1362.05012 J. Comb. Theory, Ser. A 150, 208-232 (2017). MSC: 05A17 05A05 11B73 20B30 PDF BibTeX XML Cite \textit{A. Ayyer} et al., J. Comb. Theory, Ser. A 150, 208--232 (2017; Zbl 1362.05012) Full Text: DOI arXiv
Bartel, Alex; Spencer, Matthew A note on Green functors with inflation. (English) Zbl 1369.19002 J. Algebra 483, 230-244 (2017). Reviewer: Andrei Marcus (Cluj-Napoca) MSC: 19A22 20B05 20B10 20C15 20C20 PDF BibTeX XML Cite \textit{A. Bartel} and \textit{M. Spencer}, J. Algebra 483, 230--244 (2017; Zbl 1369.19002) Full Text: DOI
Neumann, Peter M.; Praeger, Cheryl E.; Smith, Simon M. Some infinite permutation groups and related finite linear groups. (English) Zbl 1430.20003 J. Aust. Math. Soc. 102, No. 1, 136-149 (2017). MSC: 20B07 20C05 20C10 20C20 PDF BibTeX XML Cite \textit{P. M. Neumann} et al., J. Aust. Math. Soc. 102, No. 1, 136--149 (2017; Zbl 1430.20003) Full Text: DOI arXiv
Prasad, Dipendra A refined notion of arithmetically equivalent number fields, and curves with isomorphic Jacobians. (English) Zbl 1430.11153 Adv. Math. 312, 198-208 (2017). MSC: 11R42 14G10 14H40 20C05 PDF BibTeX XML Cite \textit{D. Prasad}, Adv. Math. 312, 198--208 (2017; Zbl 1430.11153) Full Text: DOI arXiv
Guralnick, Robert M.; Maróti, Attila; Pyber, László Normalizers of primitive permutation groups. (English) Zbl 1414.20002 Adv. Math. 310, 1017-1063 (2017). Reviewer: Mohammad-Reza Darafsheh (Tehran) MSC: 20B15 20C20 20D35 20D45 20D60 PDF BibTeX XML Cite \textit{R. M. Guralnick} et al., Adv. Math. 310, 1017--1063 (2017; Zbl 1414.20002) Full Text: DOI Backlinks: MO
Moori, Jamshid; Saeidi, Amin Some designs and codes invariant under the Tits group. (English) Zbl 1357.05019 Adv. Math. Commun. 11, No. 1, 77-82 (2017). MSC: 05B05 05E15 20D05 PDF BibTeX XML Cite \textit{J. Moori} and \textit{A. Saeidi}, Adv. Math. Commun. 11, No. 1, 77--82 (2017; Zbl 1357.05019) Full Text: DOI
Coşkun, Olcay The Dade group of Mackey functors for \(p\)-groups. (English) Zbl 1359.20008 J. Algebra 470, 172-196 (2017). Reviewer: Burkhard Külshammer (Jena) MSC: 20C20 19A22 20D15 PDF BibTeX XML Cite \textit{O. Coşkun}, J. Algebra 470, 172--196 (2017; Zbl 1359.20008) Full Text: DOI
Prins, Abraham Love The character table of an involution centralizer in the Dempwolff group \(2^{5\cdot} \mathrm{GL}_5(2)\). (English) Zbl 1436.20010 Quaest. Math. 39, No. 4, 561-576 (2016). MSC: 20C15 20-08 PDF BibTeX XML Cite \textit{A. L. Prins}, Quaest. Math. 39, No. 4, 561--576 (2016; Zbl 1436.20010) Full Text: DOI
Fray, R. L.; Monaledi, R. L.; Prins, A. L. Fischer-Clifford matrices of \(2^8{:}(U_4(2){:}2)\) as a subgroup of \(O_{10}^+(2)\). (English) Zbl 1378.20008 Afr. Mat. 27, No. 7-8, 1295-1310 (2016). MSC: 20C15 20C40 PDF BibTeX XML Cite \textit{R. L. Fray} et al., Afr. Mat. 27, No. 7--8, 1295--1310 (2016; Zbl 1378.20008) Full Text: DOI
Prins, A. L. The Fischer-Clifford matrices and character table of the maximal subgroup \(2^9{:}(L_3(4){:}S_3)\) of \(U_6(2){:}S_3\). (English) Zbl 1373.20012 Bull. Iran. Math. Soc. 42, No. 5, 1179-1195 (2016). MSC: 20C33 20C40 20E28 PDF BibTeX XML Cite \textit{A. L. Prins}, Bull. Iran. Math. Soc. 42, No. 5, 1179--1195 (2016; Zbl 1373.20012) Full Text: Link
Prins, A. L. Fischer-Clifford matrices of the maximal subgroup \(2^6: S_8\) of \(O_8^+ (2):2\). (English) Zbl 1374.20003 Southeast Asian Bull. Math. 40, No. 5, 737-751 (2016). MSC: 20C15 20C40 20G40 20E28 PDF BibTeX XML Cite \textit{A. L. Prins}, Southeast Asian Bull. Math. 40, No. 5, 737--751 (2016; Zbl 1374.20003)
Gill, Nick Quasirandom group actions. (English) Zbl 1454.20002 Forum Math. Sigma 4, Paper No. e24, 35 p. (2016). MSC: 20B05 20C15 20D06 60B15 PDF BibTeX XML Cite \textit{N. Gill}, Forum Math. Sigma 4, Paper No. e24, 35 p. (2016; Zbl 1454.20002) Full Text: DOI arXiv
Cherniavsky, Yonah; Shwartz, Robert On representations of affine Coxeter groups. (English) Zbl 1357.20018 JP J. Algebra Number Theory Appl. 38, No. 6, 665-676 (2016). MSC: 20F55 05E10 05E15 20F05 PDF BibTeX XML Cite \textit{Y. Cherniavsky} and \textit{R. Shwartz}, JP J. Algebra Number Theory Appl. 38, No. 6, 665--676 (2016; Zbl 1357.20018) Full Text: DOI
Barron, Katrina Twisted modules for tensor product vertex operator superalgebras and permutation automorphisms of odd order. (English) Zbl 1410.17022 Misra, Kailash C. (ed.) et al., Lie algebras, Lie superalgebras, vertex algebras and related topics. 2012–2014 Southeastern Lie theory workshop series: Categorification of quantum groups and representation theory, North Carolina State University, Raleigh, NC, USA, April 21–22, 2012. Lie algebras, vertex algebras, integrable systems and applications, College of Charleston, Charleston, SC, USA, December 16–18, 2012. Noncommutative algebraic geometry and representation theory, Louisiana State University, Baton Rouge, LA, USA, May 10–12, 2013. Representation theory of Lie algebras and superalgebras, University of Georgia, Athens, GA, USA, May 16–17, 2014. Proceedings. Providence, RI: American Mathematical Society (AMS). Proc. Symp. Pure Math. 92, 45-79 (2016). MSC: 17B69 17B68 81R10 81T40 81T60 PDF BibTeX XML Cite \textit{K. Barron}, Proc. Symp. Pure Math. 92, 45--79 (2016; Zbl 1410.17022) Full Text: arXiv
Goodson, Joshua E. Regular orbits of extra-special groups. (English) Zbl 1358.20006 Algebra Colloq. 23, No. 4, 681-688 (2016). MSC: 20B05 20D60 20D15 20C20 PDF BibTeX XML Cite \textit{J. E. Goodson}, Algebra Colloq. 23, No. 4, 681--688 (2016; Zbl 1358.20006) Full Text: DOI
Hanany, Amihay; Jejjala, Vishnu; Ramgoolam, Sanjaye; Seong, Rak-Kyeong Consistency and derangements in brane tilings. (English) Zbl 1352.81049 J. Phys. A, Math. Theor. 49, No. 35, Article ID 355401, 15 p. (2016). MSC: 81T30 81T13 81T15 81T60 14M25 14J32 81R05 PDF BibTeX XML Cite \textit{A. Hanany} et al., J. Phys. A, Math. Theor. 49, No. 35, Article ID 355401, 15 p. (2016; Zbl 1352.81049) Full Text: DOI arXiv
Mendes, Anthony; Romero, Marino A note on the \(k\)th tensor product of the defining representation. (English) Zbl 1350.05176 J. Comb. 7, No. 4, 715-724 (2016). MSC: 05E10 05E15 20B30 PDF BibTeX XML Cite \textit{A. Mendes} and \textit{M. Romero}, J. Comb. 7, No. 4, 715--724 (2016; Zbl 1350.05176) Full Text: DOI
Sebens, Charles T. Constructing and constraining wave functions for identical quantum particles. (English) Zbl 1349.81118 Stud. Hist. Philos. Sci., Part B, Stud. Hist. Philos. Mod. Phys. 56, 48-59 (2016). MSC: 81S05 81V70 20C30 83F05 81P05 00A79 PDF BibTeX XML Cite \textit{C. T. Sebens}, Stud. Hist. Philos. Sci., Part B, Stud. Hist. Philos. Mod. Phys. 56, 48--59 (2016; Zbl 1349.81118) Full Text: DOI
Easdown, David; Hendriksen, Michael Minimal permutation representations of semidirect products of groups. (English) Zbl 1352.20003 J. Group Theory 19, No. 6, 1017-1048 (2016). MSC: 20B35 20C15 20D60 20D20 20D40 PDF BibTeX XML Cite \textit{D. Easdown} and \textit{M. Hendriksen}, J. Group Theory 19, No. 6, 1017--1048 (2016; Zbl 1352.20003) Full Text: DOI
Borodin, Alexei; Olshanski, Grigori Representations of the infinite symmetric group. (English) Zbl 1364.20001 Cambridge Studies in Advanced Mathematics 160. Cambridge: Cambridge University Press (ISBN 978-1-107-17555-6/hbk; 978-1-316-79857-7/ebook). vii, 160 p. (2016). Reviewer: Mohammad-Reza Darafsheh (Tehran) MSC: 20-02 20C32 20C15 20B07 05E10 PDF BibTeX XML Cite \textit{A. Borodin} and \textit{G. Olshanski}, Representations of the infinite symmetric group. Cambridge: Cambridge University Press (2016; Zbl 1364.20001) Full Text: DOI
Bereg, Sergey; Holroyd, Alexander E.; Nachmanson, Lev; Pupyrev, Sergey Representing permutations with few moves. (English) Zbl 1347.05002 SIAM J. Discrete Math. 30, No. 4, 1950-1977 (2016). MSC: 05A05 68Q17 05C62 PDF BibTeX XML Cite \textit{S. Bereg} et al., SIAM J. Discrete Math. 30, No. 4, 1950--1977 (2016; Zbl 1347.05002) Full Text: DOI arXiv
Prins, Abraham Love Fischer-Clifford theory applied to a non-split extension group \(2^{5\cdot}GL_4(2)\). (English) Zbl 1350.20008 Palest. J. Math. 5, No. 2, 71-82 (2016). MSC: 20C15 20C25 20C40 PDF BibTeX XML Cite \textit{A. L. Prins}, Palest. J. Math. 5, No. 2, 71--82 (2016; Zbl 1350.20008) Full Text: Link