×

Exact combined solutions for the \((2+1)\)-dimensional dispersive long water-wave equations. (English) Zbl 1440.35280

Summary: The homogeneous balance of undetermined coefficient (HBUC) method is presented to obtain not only the linear, bilinear, or homogeneous forms but also the exact traveling wave solutions of nonlinear partial differential equations. Linear equation is obtained by applying the proposed method to the \((2+1)\)-dimensional dispersive long water-wave equations. Accordingly, the multiple soliton solutions, periodic solutions, singular solutions, rational solutions, and combined solutions of the \((2+1)\)-dimensional dispersive long water-wave equations are obtained directly. The HBUC method, which can be used to handle some nonlinear partial differential equations, is a standard, computable, and powerful method.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B25 Solitary waves for incompressible inviscid fluids
35C07 Traveling wave solutions
35C08 Soliton solutions
35B10 Periodic solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y., The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, Applied Mathematics Letters, 100, 106018 (2020) · Zbl 1430.35095 · doi:10.1016/j.aml.2019.106018
[2] Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electronic Journal of Differential Equations, 2018, 147, 1-15 (2018) · Zbl 1398.35034
[3] Chen, C.; Li, K.; Chen, Y.; Huang, Y., Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations, Advances in Computational Mathematics, 45, 2, 611-630 (2019) · Zbl 1415.65223 · doi:10.1007/s10444-018-9628-2
[4] Zhang, X.; Jiang, J.; Wu, Y.; Cui, Y., Existence and asymptotic properties of solutions for a nonlinear Schrödinger elliptic equation from geophysical fluid flows, Applied Mathematics Letters, 90, 229-237 (2019) · Zbl 1411.35099 · doi:10.1016/j.aml.2018.11.011
[5] Zhang, X.; Wu, Y.; Cui, Y., Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator, Applied Mathematics Letters, 82, 85-91 (2018) · Zbl 1393.35228 · doi:10.1016/j.aml.2018.02.019
[6] Chen, C.; Zhang, X.; Zhang, G.; Zhang, Y., A two-grid finite element method for nonlinear parabolic integro-differential equations, International Journal of Computer Mathematics, 96, 10, 2010-2023 (2019) · Zbl 1499.65487 · doi:10.1080/00207160.2018.1548699
[7] Chen, C.; Zhao, X., A posteriori error estimate for finite volume element method of the parabolic equations, Numerical Methods for Partial Differential Equations, 33, 1, 259-275 (2017) · Zbl 1361.65066 · doi:10.1002/num.22085
[8] Chen, C.; Liu, H.; Zheng, X.; Wang, H., A two-grid MMOC finite element method for nonlinear variable-order time- fractional mobile/immobile advection-diffusion equations, Computers and Mathematics with Applications, 79, 9, 2771-2783 (2020) · Zbl 1437.65180 · doi:10.1016/j.camwa.2019.12.008
[9] Debnath, L., Nonlinear Partial Differential Equations for Scientists and Engineers (2012), New York, NY, USA: Springer, New York, NY, USA · Zbl 1242.35001 · doi:10.1007/978-0-8176-8265-1
[10] Chen, C.; Liu, W.; Bi, C., A two-grid characteristic finite volume element method for semilinear advection-dominated diffusion equations, Numerical Methods for Partial Differential Equations, 29, 5, 1543-1562 (2013) · Zbl 1274.65252 · doi:10.1002/num.21766
[11] Wang, M.; Li, X.; Zhang, J., The \(\left( G^\prime / G\right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372, 4, 417-423 (2008) · Zbl 1217.76023
[12] Zhang, H., New application of the \(\left( G^\prime / G\right)\)-expansion method, Communications in Nonlinear Science and Numerical Simulation, 14, 8, 3220-3225 (2009) · Zbl 1221.35380
[13] Sakar, M. G.; Uludag, F.; Erdogan, F., Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method, Applied Mathematical Modelling, 40, 13-14, 6639-6649 (2016) · Zbl 1465.65113 · doi:10.1016/j.apm.2016.02.005
[14] Zhang, R.; Yang, L.; Song, J.; Yang, H., (2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method, Computers & Mathematics with Applications, 73, 9, 1996-2003 (2017) · Zbl 1371.86021 · doi:10.1016/j.camwa.2017.02.036
[15] Yang, X.; Deng, Z.; Wei, Y., A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Advances in Difference Equations, 2015 (2015) · Zbl 1422.35153 · doi:10.1186/s13662-015-0452-4
[16] Alharbi, A. R.; Almatrafi, M. B., Riccati-Bernoulli sub-ODE approach on the partial differential equations and applications, International Journal of Mathematics and Computer Science, 15, 1, 367-388 (2020) · Zbl 1430.35007
[17] Luo, H.; Dai, Z.; Liu, J.; Mu, G., Explicit doubly periodic soliton solutions for the (2+1)-dimensional Boussinesq equation, Applied Mathematics and Computation, 219, 12, 6618-6621 (2013) · Zbl 1290.35229 · doi:10.1016/j.amc.2012.12.066
[18] Guo, Y.; Li, D.; Wang, J., The new exact solutions of the Fifth-Order Sawada-Kotera equation using three wave method, Applied Mathematics Letters, 94, 232-237 (2019) · Zbl 1412.35044 · doi:10.1016/j.aml.2019.03.001
[19] Ablowitz, M. A.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[20] Zhang, X.; Chen, Y., Inverse scattering transformation for generalized nonlinear Schrödinger equation, Applied Mathematics Letters, 98, 306-313 (2019) · Zbl 1428.35547 · doi:10.1016/j.aml.2019.06.014
[21] Eslami, M.; Fathi Vajargah, B.; Mirzazadeh, M.; Biswas, A., Application of first integral method to fractional partial differential equations, Indian Journal of Physics, 88, 2, 177-184 (2014) · doi:10.1007/s12648-013-0401-6
[22] Zayed, E. M. E.; Amer, Y. A., The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear Schrödinger equation, Computational Mathematics and Modeling, 27, 1, 80-94 (2016) · Zbl 1332.35344 · doi:10.1007/s10598-015-9305-y
[23] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27, 18, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[24] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1099.35111 · doi:10.1017/CBO9780511543043
[25] Wang, M., Solitary wave solutions for variant Boussinesq equations, Physics Letters A, 199, 3-4, 169-172 (1995) · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[26] Bai, C., Extended homogeneous balance method and Lax pairs, Backlund transformation, Communications in Theoretical Physics, 37, 6, 645-648 (2002) · Zbl 1267.37088
[27] He, J., A new approach to nonlinear partial differential equations, Communications in Nonlinear Science and Numerical Simulation, 2, 4, 230-235 (1997) · Zbl 0923.35046 · doi:10.1016/S1007-5704(97)90007-1
[28] Zhang, X.; Xu, J.; Jiang, J.; Wu, Y.; Cui, Y., The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations, Applied Mathematics Letters, 102, article 106124 (2020) · Zbl 1440.35018 · doi:10.1016/j.aml.2019.106124
[29] Wazwaz, A. M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Applied Mathematics and Computation, 167, 2, 1196-1210 (2005) · Zbl 1082.65585 · doi:10.1016/j.amc.2004.08.005
[30] Guner, O.; Bekir, A.; Korkmaz, A., Tanh-type and sech-type solitons for some space-time fractional PDE models, The European Physical Journal Plus, 132, 2, 1-12 (2017) · doi:10.1140/epjp/i2017-11370-7
[31] Wang, X.-B.; Tian, S.-F.; Yan, H.; Zhang, T. T., On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Computers & Mathematics with Applications, 74, 3, 556-563 (2017) · Zbl 1387.35538 · doi:10.1016/j.camwa.2017.04.034
[32] Wei, L., Multiple periodic-soliton solutions to Kadomtsev-Petviashvili equation, Applied Mathematics and Computation, 218, 2, 368-375 (2011) · Zbl 1223.37090 · doi:10.1016/j.amc.2011.05.072
[33] Wazwaz, A. M., Multiple soliton solutions and rational solutions for the (2+1)-dimensional dispersive long water-wave system, Ocean Engineering, 60, 95-98 (2013) · doi:10.1016/j.oceaneng.2012.12.049
[34] Ren, B.; Ma, W.-X.; Yu, J., Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation, Computers & Mathematics with Applications, 77, 8, 2086-2095 (2019) · Zbl 1442.35400 · doi:10.1016/j.camwa.2018.12.010
[35] Wu, J.; Keolian, R.; Rudnick, I., Observation of a nonpropagating hydrodynamic soliton, Physical Review Letters, 52, 16, 1421-1424 (1984) · doi:10.1103/PhysRevLett.52.1421
[36] Paquin, G.; Winternitz, P., Group theoretical analysis of dispersive long wave equations in two space dimensions, Physica D: Nonlinear Phenomena, 46, 1, 122-138 (1990) · Zbl 0725.35104 · doi:10.1016/0167-2789(90)90115-6
[37] Zheng, C.; Fang, J.; Chen, L., Localized excitations with and without propagating properties in (2+1)-dimensions obtained by a mapping approach, Chinese Physics, 14, 676-682 (2005)
[38] Fei, J.-X.; Zheng, C.-L., Localized excitations in a dispersive long water-wave system via an extended projective approach, Zeitschrift für Naturforschung A, 62, 3-4, 140-146 (2007) · doi:10.1515/zna-2007-3-404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.