Wei, Jingdong; Zhou, Jiangbo; Zhen, Zaili; Tian, Lixin Time periodic traveling waves in a three-component non-autonomous and reaction-diffusion epidemic model. (English) Zbl 07308678 Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021). MSC: 35K57 35B40 92D30 PDF BibTeX XML Cite \textit{J. Wei} et al., Int. J. Math. 32, No. 1, Article ID 2150003, 37 p. (2021; Zbl 07308678) Full Text: DOI
Benzoni-Gavage, Sylvie; Mietka, Colin; Rodrigues, Luis Miguel Modulated equations of Hamiltonian PDEs and dispersive shocks. (English) Zbl 07303411 Nonlinearity 34, No. 1, 578-641 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35Q35 35C07 35C08 35B10 35B40 37K45 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Nonlinearity 34, No. 1, 578--641 (2021; Zbl 07303411) Full Text: DOI
Leta, Temesgen Desta; Liu, Wenjun; Ding, Jian Existence of periodic, solitary and compacton travelling wave solutions of a \((3+1)\)-dimensional time-fractional nonlinear evolution equations with applications. (English) Zbl 07302481 Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021). MSC: 34A05 34C23 34C37 34C25 35C07 35R11 PDF BibTeX XML Cite \textit{T. D. Leta} et al., Anal. Math. Phys. 11, No. 1, Paper No. 34, 26 p. (2021; Zbl 07302481) Full Text: DOI
de Rijk, Björn; Sandstede, Björn Reprint of: “Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems”. (English) Zbl 07289131 J. Differ. Equations 274, 1223-1261 (2021). MSC: 35C07 35B35 35K57 PDF BibTeX XML Cite \textit{B. de Rijk} and \textit{B. Sandstede}, J. Differ. Equations 274, 1223--1261 (2021; Zbl 07289131) Full Text: DOI
Zheng, Xiaoxiao; Xiao, Qizhen; Ouyang, Zigen A smooth soliton solution and a periodic cuspon solution of the Novikov equation. (English) Zbl 07281317 Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021). MSC: 35C07 35C08 35B10 35G25 35B32 PDF BibTeX XML Cite \textit{X. Zheng} et al., Appl. Math. Lett. 112, Article ID 106786, 7 p. (2021; Zbl 07281317) Full Text: DOI
Abdelsalam, U. M. Exact solutions for coupled nonlinear partial differential equations using \(G'/G\) method. (English) Zbl 07246077 Electron. J. Math. Analysis Appl. 9, No. 1, 67-78 (2021). MSC: 35C07 35C08 35B10 35C09 PDF BibTeX XML Cite \textit{U. M. Abdelsalam}, Electron. J. Math. Analysis Appl. 9, No. 1, 67--78 (2021; Zbl 07246077) Full Text: Link
Meng, Qing; He, Bin Bifurcation analysis and exact traveling wave solutions for a generic two-dimensional sine-Gordon equation in nonlinear optics. (English) Zbl 07315418 J. Appl. Anal. Comput. 10, No. 4, 1443-1463 (2020). MSC: 34C25 34F10 35C07 35C08 PDF BibTeX XML Cite \textit{Q. Meng} and \textit{B. He}, J. Appl. Anal. Comput. 10, No. 4, 1443--1463 (2020; Zbl 07315418) Full Text: DOI
Zhuang, Jinsen; Zhou, Yan Bifurcations and exact traveling wave solutions of the equivalent complex short-pulse equations. (English) Zbl 07315123 J. Appl. Anal. Comput. 10, No. 2, 795-815 (2020). MSC: 34C60 35Q51 35C05 35C07 35C08 PDF BibTeX XML Cite \textit{J. Zhuang} and \textit{Y. Zhou}, J. Appl. Anal. Comput. 10, No. 2, 795--815 (2020; Zbl 07315123) Full Text: DOI
Raza, Nauman; Seadawy, Aly R.; Jhangeer, Adil; Butt, Asma Rashid; Arshed, Saima Dynamical behavior of micro-structured solids with conformable time fractional strain wave equation. (English) Zbl 1448.35074 Phys. Lett., A 384, No. 27, Article ID 126683, 11 p. (2020). MSC: 35C07 35R11 74S40 PDF BibTeX XML Cite \textit{N. Raza} et al., Phys. Lett., A 384, No. 27, Article ID 126683, 11 p. (2020; Zbl 1448.35074) Full Text: DOI
Wang, Shuang-Ming; Feng, Zhaosheng; Wang, Zhi-Cheng; Zhang, Liang Periodic traveling wave of a time periodic and diffusive epidemic model with nonlocal delayed transmission. (English) Zbl 07269745 Nonlinear Anal., Real World Appl. 55, Article ID 103117, 27 p. (2020). MSC: 92D30 35C07 35B10 PDF BibTeX XML Cite \textit{S.-M. Wang} et al., Nonlinear Anal., Real World Appl. 55, Article ID 103117, 27 p. (2020; Zbl 07269745) Full Text: DOI
Budzinskiy, S.; Beuter, A.; Volpert, V. Nonlinear analysis of periodic waves in a neural field model. (English) Zbl 1451.92013 Chaos 30, No. 8, 083144, 12 p. (2020). MSC: 92B20 35C07 35B32 PDF BibTeX XML Cite \textit{S. Budzinskiy} et al., Chaos 30, No. 8, 083144, 12 p. (2020; Zbl 1451.92013) Full Text: DOI
San, Xue-Feng; Wang, Zhi-Cheng; Feng, Zhaosheng Spreading speed and traveling waves for an epidemic model in a periodic patchy environment. (English) Zbl 07265423 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105387, 23 p. (2020). MSC: 34A33 34C60 92D30 34B40 PDF BibTeX XML Cite \textit{X.-F. San} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105387, 23 p. (2020; Zbl 07265423) Full Text: DOI
Banerjee, Malay; Mukherjee, Nayana; Volpert, Vitaly Prey-predator model with nonlocal and global consumption in the prey dynamics. (English) Zbl 1450.35103 Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2109-2120 (2020). MSC: 35C07 35B32 35K57 92D25 PDF BibTeX XML Cite \textit{M. Banerjee} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 8, 2109--2120 (2020; Zbl 1450.35103) Full Text: DOI
Varholm, Kristoffer Global bifurcation of waves with multiple critical layers. (English) Zbl 07263712 SIAM J. Math. Anal. 52, No. 5, 5066-5089 (2020). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35Q35 35B32 35C07 76B15 76U05 PDF BibTeX XML Cite \textit{K. Varholm}, SIAM J. Math. Anal. 52, No. 5, 5066--5089 (2020; Zbl 07263712) Full Text: DOI
Giletti, Thomas; Rossi, Luca Pulsating solutions for multidimensional bistable and multistable equations. (English) Zbl 1450.35107 Math. Ann. 378, No. 3-4, 1555-1611 (2020). MSC: 35C07 35K15 35K57 PDF BibTeX XML Cite \textit{T. Giletti} and \textit{L. Rossi}, Math. Ann. 378, No. 3--4, 1555--1611 (2020; Zbl 1450.35107) Full Text: DOI
Zeng, Yanni; Sun, Xianbo; Yu, Pei Dynamical analysis on traveling wave of a reaction-diffusion model. (English) Zbl 1450.35112 Appl. Math. Lett. 109, Article ID 106550, 5 p. (2020). MSC: 35C07 35K59 35B32 PDF BibTeX XML Cite \textit{Y. Zeng} et al., Appl. Math. Lett. 109, Article ID 106550, 5 p. (2020; Zbl 1450.35112) Full Text: DOI
Cai, Jingjing; Xu, Li; Chai, Yuan Entire solutions of time periodic Fisher-KPP equation on the half line. (English) Zbl 1448.35021 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112005, 15 p. (2020). MSC: 35B08 35K57 35C07 35B40 35B10 PDF BibTeX XML Cite \textit{J. Cai} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 200, Article ID 112005, 15 p. (2020; Zbl 1448.35021) Full Text: DOI
Li, Jibin; Chen, Guanrong; Zhou, Yan Exact peakon, periodic peakon and pseudo-peakon solutions of the rotation-two-component Camassa-Holm system. (English) Zbl 1447.35106 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050139, 14 p. (2020). MSC: 35C08 35C07 35G25 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 9, Article ID 2050139, 14 p. (2020; Zbl 1447.35106) Full Text: DOI
Zhang, Liang; Wang, Zhi-Cheng; Zhao, Xiao-Qiang Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality. (English) Zbl 1447.35104 J. Evol. Equ. 20, No. 3, 1029-1059 (2020). MSC: 35C07 35B10 35K57 35B35 35B40 92D30 93B60 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Evol. Equ. 20, No. 3, 1029--1059 (2020; Zbl 1447.35104) Full Text: DOI
Han, Bang-Sheng; Chang, Meng-Xue; Yang, Yinghui Spatial dynamics of a nonlocal bistable reaction diffusion equation. (English) Zbl 1447.35098 Electron. J. Differ. Equ. 2020, Paper No. 84, 23 p. (2020). MSC: 35C07 35B33 35B40 35K57 35R09 92D25 PDF BibTeX XML Cite \textit{B.-S. Han} et al., Electron. J. Differ. Equ. 2020, Paper No. 84, 23 p. (2020; Zbl 1447.35098) Full Text: Link
Giletti, Thomas; Matano, Hiroshi Existence and uniqueness of propagating terraces. (English) Zbl 1445.35209 Commun. Contemp. Math. 22, No. 6, Article ID 1950055, 38 p. (2020). MSC: 35K57 35C07 35B08 PDF BibTeX XML Cite \textit{T. Giletti} and \textit{H. Matano}, Commun. Contemp. Math. 22, No. 6, Article ID 1950055, 38 p. (2020; Zbl 1445.35209) Full Text: DOI
Liu, Jian-gen; Yang, Xiao-jun; Feng, Yi-ying On integrability of the extended \((3+1)\)-dimensional Jimbo-Miwa equation. (English) Zbl 1445.35124 Math. Methods Appl. Sci. 43, No. 4, 1646-1659 (2020). MSC: 35G25 35C07 35L05 35C08 35Q35 PDF BibTeX XML Cite \textit{J.-g. Liu} et al., Math. Methods Appl. Sci. 43, No. 4, 1646--1659 (2020; Zbl 1445.35124) Full Text: DOI
Li, Jibin; Chen, Guanrong; Song, Jie Bifurcations and dynamics of traveling wave solutions for the regularized Saint-Venant equation. (English) Zbl 1445.35037 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 7, Article ID 2050109, 19 p. (2020). MSC: 35B32 35C07 35C08 35Q35 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 7, Article ID 2050109, 19 p. (2020; Zbl 1445.35037) Full Text: DOI
Faver, Timothy E. Nanopteron-stegoton traveling waves in spring dimer Fermi-Pasta-Ulam-Tsingou lattices. (English) Zbl 07209564 Q. Appl. Math. 78, No. 3, 363-429 (2020). MSC: 37L60 34A33 35C07 37K60 35B25 35Q53 PDF BibTeX XML Cite \textit{T. E. Faver}, Q. Appl. Math. 78, No. 3, 363--429 (2020; Zbl 07209564) Full Text: DOI
Lin, Guo; Pan, Shuxia Periodic traveling wave solutions of periodic integrodifference systems. (English) Zbl 1448.35529 Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 3005-3031 (2020). MSC: 35R09 35B10 35C07 35K57 92D25 35Q92 PDF BibTeX XML Cite \textit{G. Lin} and \textit{S. Pan}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 3005--3031 (2020; Zbl 1448.35529) Full Text: DOI
Wei, Yi; Zhang, Xing-Qiu; Shao, Zhu-Yan; Gu, Lu-Feng; Yang, Xiao-Feng Exact combined solutions for the \((2+1)\)-dimensional dispersive long water-wave equations. (English) Zbl 1440.35280 J. Funct. Spaces 2020, Article ID 3707924, 7 p. (2020). MSC: 35Q35 76B25 35C07 35C08 35B10 PDF BibTeX XML Cite \textit{Y. Wei} et al., J. Funct. Spaces 2020, Article ID 3707924, 7 p. (2020; Zbl 1440.35280) Full Text: DOI
Guo, Lina; Zhao, Yulin Existence of periodic waves for a perturbed quintic BBM equation. (English) Zbl 1445.34065 Discrete Contin. Dyn. Syst. 40, No. 8, 4689-4703 (2020). Reviewer: George Karakostas (Ioannina) MSC: 34C25 37J40 35C07 35B25 34E15 34E10 PDF BibTeX XML Cite \textit{L. Guo} and \textit{Y. Zhao}, Discrete Contin. Dyn. Syst. 40, No. 8, 4689--4703 (2020; Zbl 1445.34065) Full Text: DOI
Martins, Renan H.; Natali, Fábio A comment about the paper “On the instability of elliptic traveling wave solutions of the modified Camassa-Holm equation”. (English) Zbl 1434.35005 J. Differ. Equations 269, No. 5, 4598-4608 (2020). MSC: 35B35 35C07 35B10 PDF BibTeX XML Cite \textit{R. H. Martins} and \textit{F. Natali}, J. Differ. Equations 269, No. 5, 4598--4608 (2020; Zbl 1434.35005) Full Text: DOI
Hilder, Bastian Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law. (English) Zbl 1441.35092 J. Differ. Equations 269, No. 5, 4353-4380 (2020). MSC: 35C07 35B10 35B32 35B36 35Q35 34C37 35K45 35K57 PDF BibTeX XML Cite \textit{B. Hilder}, J. Differ. Equations 269, No. 5, 4353--4380 (2020; Zbl 1441.35092) Full Text: DOI
Benzoni-Gavage, S.; Mietka, C.; Rodrigues, L. M. Stability of periodic waves in Hamiltonian PDEs of either long wavelength or small amplitude. (English) Zbl 1450.35055 Indiana Univ. Math. J. 69, No. 2, 545-619 (2020). Reviewer: Dmitry Pelinovsky (Hamilton) MSC: 35B35 35B10 35Q35 35Q51 35Q53 37K06 37K45 35C07 PDF BibTeX XML Cite \textit{S. Benzoni-Gavage} et al., Indiana Univ. Math. J. 69, No. 2, 545--619 (2020; Zbl 1450.35055) Full Text: DOI
Bao, Xiongxiong; Li, Wan-Tong Stability of traveling waves for partially degenerate nonlocal dispersal models in periodic habitats. (English) Zbl 1437.35139 Appl. Math. Lett. 104, Article ID 106289, 7 p. (2020). MSC: 35C07 35B35 35R09 35Q92 PDF BibTeX XML Cite \textit{X. Bao} and \textit{W.-T. Li}, Appl. Math. Lett. 104, Article ID 106289, 7 p. (2020; Zbl 1437.35139) Full Text: DOI
Li, Jibin; Chen, Guanrong; Song, Jie Completing the study of traveling wave solutions for three two-component shallow water wave models. (English) Zbl 1444.34004 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050036, 22 p. (2020). MSC: 34A05 34C23 34C05 34C25 34C37 35C07 35Q53 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 3, Article ID 2050036, 22 p. (2020; Zbl 1444.34004) Full Text: DOI
Zhao, Haiqin; Gu, Yumeng Periodic traveling wavefronts of a multi-type SIS epidemic model with seasonality. (English) Zbl 1439.35497 Z. Angew. Math. Phys. 71, No. 2, Paper No. 63, 14 p. (2020). MSC: 35Q92 92D30 35B10 35B35 35B40 35C07 35F55 35R10 PDF BibTeX XML Cite \textit{H. Zhao} and \textit{Y. Gu}, Z. Angew. Math. Phys. 71, No. 2, Paper No. 63, 14 p. (2020; Zbl 1439.35497) Full Text: DOI
Li, Jibin; Chen, Guanrong; Song, Jie Bifurcations of traveling wave solutions for fully nonlinear water waves with surface tension in the generalized Serre-Green-Naghdi equations. (English) Zbl 1435.34007 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050019, 18 p. (2020). MSC: 34A05 35C08 35C07 35L05 34C05 34C37 34B40 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 1, Article ID 2050019, 18 p. (2020; Zbl 1435.34007) Full Text: DOI
Zhang, Bei; Zhu, Wenjing; Xia, Yonghui; Bai, Yuzhen A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: via bifurcation theory of dynamical system. (English) Zbl 1450.34008 Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 11, 28 p. (2020). MSC: 34A05 34C23 34C05 34C37 35C07 35R11 PDF BibTeX XML Cite \textit{B. Zhang} et al., Qual. Theory Dyn. Syst. 19, No. 1, Paper No. 11, 28 p. (2020; Zbl 1450.34008) Full Text: DOI
Alama, Yvonne Bronsard; Lessard, Jean-Philippe Traveling wave oscillatory patterns in a signed Kuramoto-Sivashinsky equation with absorption. (English) Zbl 1432.35039 J. Comput. Appl. Math. 372, Article ID 112608, 7 p. (2020). MSC: 35C07 35K25 35K58 34C25 34C23 34A36 PDF BibTeX XML Cite \textit{Y. B. Alama} and \textit{J.-P. Lessard}, J. Comput. Appl. Math. 372, Article ID 112608, 7 p. (2020; Zbl 1432.35039) Full Text: DOI
Sun, Xianbo; Huang, Wentao; Cai, Junning Coexistence of the solitary and periodic waves in convecting shallow water fluid. (English) Zbl 1433.35297 Nonlinear Anal., Real World Appl. 53, Article ID 103067, 17 p. (2020). MSC: 35Q35 35Q53 76B25 76B15 76R10 35C07 PDF BibTeX XML Cite \textit{X. Sun} et al., Nonlinear Anal., Real World Appl. 53, Article ID 103067, 17 p. (2020; Zbl 1433.35297) Full Text: DOI
Bao, Xiongxiong; Li, Wan-Tong Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats. (English) Zbl 1430.92122 Nonlinear Anal., Real World Appl. 51, Article ID 102975, 26 p. (2020). MSC: 92D40 92D30 35Q92 35C07 35B10 PDF BibTeX XML Cite \textit{X. Bao} and \textit{W.-T. Li}, Nonlinear Anal., Real World Appl. 51, Article ID 102975, 26 p. (2020; Zbl 1430.92122) Full Text: DOI
Zhang, Guo-Bao; Zhao, Xiao-Qiang Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. (English) Zbl 1428.35174 J. Differ. Equations 268, No. 6, 2852-2885 (2020). MSC: 35K57 35C07 35B40 35Q92 92D25 PDF BibTeX XML Cite \textit{G.-B. Zhang} and \textit{X.-Q. Zhao}, J. Differ. Equations 268, No. 6, 2852--2885 (2020; Zbl 1428.35174) Full Text: DOI
Wu, Shi-Liang; Hsu, Cheng-Hsiung Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity. (English) Zbl 1427.35131 Adv. Nonlinear Anal. 9, 923-957 (2020). MSC: 35K57 35C07 35Q92 35K55 92D25 PDF BibTeX XML Cite \textit{S.-L. Wu} and \textit{C.-H. Hsu}, Adv. Nonlinear Anal. 9, 923--957 (2020; Zbl 1427.35131) Full Text: DOI
Luo, Wei; Yin, Zhaoyang Blow-up phenomena, ill-posedness and peakon solutions for the periodic Euler-Poincaré equations. (English) Zbl 1431.35136 J. Differ. Equations 268, No. 4, 1307-1325 (2020). MSC: 35Q35 35B30 35B44 35C07 35G25 35C08 35R25 PDF BibTeX XML Cite \textit{W. Luo} and \textit{Z. Yin}, J. Differ. Equations 268, No. 4, 1307--1325 (2020; Zbl 1431.35136) Full Text: DOI
Bao, Xiongxiong; Li, Wan-Tong; Wang, Zhi-Cheng Uniqueness and stability of time-periodic pyramidal fronts for a periodic competition-diffusion system. (English) Zbl 1423.35160 Commun. Pure Appl. Anal. 19, No. 1, 253-277 (2020). MSC: 35K40 35C07 35B10 35B35 35B40 35K57 PDF BibTeX XML Cite \textit{X. Bao} et al., Commun. Pure Appl. Anal. 19, No. 1, 253--277 (2020; Zbl 1423.35160) Full Text: DOI
Náraigh, Lennon Ó Travelling-wave spatially periodic forcing of asymmetric binary mixtures. (English) Zbl 1451.35046 Physica D 393, 24-37 (2019). MSC: 35C07 35B10 35B35 35B20 PDF BibTeX XML Cite \textit{L. Ó Náraigh}, Physica D 393, 24--37 (2019; Zbl 1451.35046) Full Text: DOI
Sun, Min; Zhang, Kelei The wave length of periodic waves of a short pulse equation. (Chinese. English summary) Zbl 1449.35456 J. Sichuan Norm. Univ., Nat. Sci. 42, No. 6, 784-788 (2019). MSC: 35R12 35C07 PDF BibTeX XML Cite \textit{M. Sun} and \textit{K. Zhang}, J. Sichuan Norm. Univ., Nat. Sci. 42, No. 6, 784--788 (2019; Zbl 1449.35456) Full Text: DOI
Kudryashov, Nikolay A.; Safonova, Dariya V.; Biswas, Anjan Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation. (English) Zbl 1434.78022 Regul. Chaotic Dyn. 24, No. 6, 607-614 (2019). MSC: 78A60 37K10 35Q51 35Q55 35C07 33E05 35C05 35B10 35Q60 35C08 PDF BibTeX XML Cite \textit{N. A. Kudryashov} et al., Regul. Chaotic Dyn. 24, No. 6, 607--614 (2019; Zbl 1434.78022) Full Text: DOI
Zhang, Bei; Xia, Yonghui; Zhu, Wenjing; Bai, Yuzhen Explicit exact traveling wave solutions and bifurcations of the generalized combined double \(\sinh\)-\(\cosh\)-Gordon equation. (English) Zbl 1433.35348 Appl. Math. Comput. 363, Article ID 124576, 26 p. (2019). MSC: 35Q53 35L71 35B10 35C07 35C08 37K40 PDF BibTeX XML Cite \textit{B. Zhang} et al., Appl. Math. Comput. 363, Article ID 124576, 26 p. (2019; Zbl 1433.35348) Full Text: DOI
Leta, Temesgen Desta; Li, Jibin Dynamical behavior of traveling wave solutions of a long waves-short waves resonance model. (English) Zbl 1432.34049 Qual. Theory Dyn. Syst. 18, No. 3, 741-760 (2019). MSC: 34C23 35L05 35C07 34A05 34C37 34C25 PDF BibTeX XML Cite \textit{T. D. Leta} and \textit{J. Li}, Qual. Theory Dyn. Syst. 18, No. 3, 741--760 (2019; Zbl 1432.34049) Full Text: DOI
Akers, Benjamin F.; Ambrose, David M.; Sulon, David W. Periodic travelling interfacial hydroelastic waves with or without mass. II: Multiple bifurcations and ripples. (English) Zbl 1427.76036 Eur. J. Appl. Math. 30, No. 4, 756-790 (2019). MSC: 76B15 76B25 35C07 35B32 35B10 PDF BibTeX XML Cite \textit{B. F. Akers} et al., Eur. J. Appl. Math. 30, No. 4, 756--790 (2019; Zbl 1427.76036) Full Text: DOI
Yang, Zhao; Zumbrun, Kevin Convergence as period goes to infinity of spectra of periodic traveling waves toward essential spectra of a homoclinic limit. (English. French summary) Zbl 1445.35108 J. Math. Pures Appl. (9) 132, 27-40 (2019). Reviewer: Thomas Giletti (Vandœuvre-lès-Nancy) MSC: 35C07 35B35 35P15 34E10 34L05 PDF BibTeX XML Cite \textit{Z. Yang} and \textit{K. Zumbrun}, J. Math. Pures Appl. (9) 132, 27--40 (2019; Zbl 1445.35108) Full Text: DOI arXiv
Verma, Pallavi; Kaur, Lakhveer Solitary wave solutions for \((1+2)\)-dimensional nonlinear Schrödinger equation with dual power law nonlinearity. (English) Zbl 1431.35185 Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 128, 15 p. (2019). MSC: 35Q55 35C08 35B10 35C07 78A60 PDF BibTeX XML Cite \textit{P. Verma} and \textit{L. Kaur}, Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 128, 15 p. (2019; Zbl 1431.35185) Full Text: DOI
Bessonov, Nikolai; Beuter, Anne; Trofimchuk, Sergei; Volpert, Vitaly Cortical waves and post-stroke brain stimulation. (English) Zbl 1425.92038 Math. Methods Appl. Sci. 42, No. 11, 3912-3928 (2019). MSC: 92C20 35B10 35C07 35Q92 45K05 PDF BibTeX XML Cite \textit{N. Bessonov} et al., Math. Methods Appl. Sci. 42, No. 11, 3912--3928 (2019; Zbl 1425.92038) Full Text: DOI
Bennett, Jamie J. R.; Sherratt, Jonathan A. Long-distance seed dispersal affects the resilience of banded vegetation patterns in semi-deserts. (English) Zbl 1422.92183 J. Theor. Biol. 481, 151-161 (2019). MSC: 92D40 92C80 35Q92 35C07 PDF BibTeX XML Cite \textit{J. J. R. Bennett} and \textit{J. A. Sherratt}, J. Theor. Biol. 481, 151--161 (2019; Zbl 1422.92183) Full Text: DOI
Pipicano, Felipe Alexander; Muñoz Grajales, Juan Carlos Existence of periodic standing wave solutions for a system describing pulse propagation in an optical fiber. (English) Zbl 1433.35370 Rev. Colomb. Mat. 53, No. 1, 87-107 (2019). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35C07 78A60 65N35 35B10 PDF BibTeX XML Cite \textit{F. A. Pipicano} and \textit{J. C. Muñoz Grajales}, Rev. Colomb. Mat. 53, No. 1, 87--107 (2019; Zbl 1433.35370) Full Text: Link
Namah, Gawtum On the uniqueness of traveling forced curvature fronts in a fibered medium. (English) Zbl 1438.35089 J. Math. Study 52, No. 1, 1-17 (2019). MSC: 35C07 35K55 PDF BibTeX XML Cite \textit{G. Namah}, J. Math. Study 52, No. 1, 1--17 (2019; Zbl 1438.35089) Full Text: DOI
Hupkes, Hermen Jan; Morelli, Leonardo; Stehlík, Petr; Švígler, Vladimír Counting and ordering periodic stationary solutions of lattice Nagumo equations. (English) Zbl 1423.92258 Appl. Math. Lett. 98, 398-405 (2019). MSC: 92E20 35K57 35B10 35C07 PDF BibTeX XML Cite \textit{H. J. Hupkes} et al., Appl. Math. Lett. 98, 398--405 (2019; Zbl 1423.92258) Full Text: DOI arXiv
Kirsch, Andreas Scattering by a periodic tube in \(\mathbb{R}^3\). II: A radiation condition. (English) Zbl 1426.78016 Inverse Probl. 35, No. 10, Article ID 104005, 21 p. (2019). MSC: 78A45 78A50 35J05 35Q60 35C07 35R11 PDF BibTeX XML Cite \textit{A. Kirsch}, Inverse Probl. 35, No. 10, Article ID 104005, 21 p. (2019; Zbl 1426.78016) Full Text: DOI
Liang, Jianli; Li, Jibin; Zhang, Yi Bifurcations and exact solutions of generalized two-component peakon type dual systems. (English) Zbl 1432.34004 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950128, 27 p. (2019). MSC: 34A05 34B40 34C05 34C23 34C37 35C07 PDF BibTeX XML Cite \textit{J. Liang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950128, 27 p. (2019; Zbl 1432.34004) Full Text: DOI
Liang, Xing; Zhou, Tao Transition semi-wave solutions of reaction diffusion equations with free boundaries. (English) Zbl 1421.35048 J. Differ. Equations 267, No. 10, 5601-5630 (2019). MSC: 35C07 35K20 35K58 35R35 35K57 35B15 PDF BibTeX XML Cite \textit{X. Liang} and \textit{T. Zhou}, J. Differ. Equations 267, No. 10, 5601--5630 (2019; Zbl 1421.35048) Full Text: DOI
Pankov, Alexander Traveling waves in Fermi-Pasta-Ulam chains with nonlocal interaction. (English) Zbl 1422.37054 Discrete Contin. Dyn. Syst., Ser. S 12, No. 7, 2097-2113 (2019). MSC: 37K60 37K40 34A33 34C25 74J35 58E05 PDF BibTeX XML Cite \textit{A. Pankov}, Discrete Contin. Dyn. Syst., Ser. S 12, No. 7, 2097--2113 (2019; Zbl 1422.37054) Full Text: DOI
Li, Zongguang; Liu, Rui Bifurcations and exact solutions in a nonlinear wave equation. (English) Zbl 1425.34053 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 7, Article ID 1950098, 10 p. (2019). MSC: 34C23 35C07 35Q53 34C37 34C05 34A05 PDF BibTeX XML Cite \textit{Z. Li} and \textit{R. Liu}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 7, Article ID 1950098, 10 p. (2019; Zbl 1425.34053) Full Text: DOI
Ducrot, Arnaud; Magal, Pierre A center manifold for second order semilinear differential equations on the real line and applications to the existence of wave trains for the Gurtin-McCamy equation. (English) Zbl 1422.37057 Trans. Am. Math. Soc. 372, No. 5, 3487-3537 (2019). Reviewer: Rodica Luca (Iaşi) MSC: 37L10 35J61 35C07 47D62 PDF BibTeX XML Cite \textit{A. Ducrot} and \textit{P. Magal}, Trans. Am. Math. Soc. 372, No. 5, 3487--3537 (2019; Zbl 1422.37057) Full Text: DOI
Az-Zo’bi, Emad A. Solitary and periodic exact solutions of the viscosity-capillarity van der Waals gas equations. (English) Zbl 1416.35066 Appl. Appl. Math. 14, No. 1, 349-358 (2019). MSC: 35C07 35M30 35Q35 65Z05 35C08 35B10 PDF BibTeX XML Cite \textit{E. A. Az-Zo'bi}, Appl. Appl. Math. 14, No. 1, 349--358 (2019; Zbl 1416.35066) Full Text: Link
Hayashi, Masayuki Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation. (English) Zbl 1420.35356 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 5, 1331-1360 (2019). MSC: 35Q55 35C07 33E05 35C08 PDF BibTeX XML Cite \textit{M. Hayashi}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 5, 1331--1360 (2019; Zbl 1420.35356) Full Text: DOI
Zhang, Liang; Wang, Zhi-Cheng; Zhao, Xiao-Qiang Propagation dynamics of a time periodic and delayed reaction-diffusion model without quasi-monotonicity. (English) Zbl 1419.35117 Trans. Am. Math. Soc. 372, No. 3, 1751-1782 (2019). Reviewer: E. Ahmed (Mansoura) MSC: 35K57 34K05 35B40 35R10 46E25 PDF BibTeX XML Cite \textit{L. Zhang} et al., Trans. Am. Math. Soc. 372, No. 3, 1751--1782 (2019; Zbl 1419.35117) Full Text: DOI
Trichtchenko, Olga; Milewski, Paul; Părău, Emilian; Vanden-Broeck, Jean-Marc Stability of periodic traveling flexural-gravity waves in two dimensions. (English) Zbl 1420.35218 Stud. Appl. Math. 142, No. 1, 65-90 (2019). MSC: 35Q31 35C07 35B40 35Q55 35B35 76B15 35B10 74F10 PDF BibTeX XML Cite \textit{O. Trichtchenko} et al., Stud. Appl. Math. 142, No. 1, 65--90 (2019; Zbl 1420.35218) Full Text: DOI
Hörmann, Günther; Okamoto, Hisashi Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation. (English) Zbl 1415.35242 Discrete Contin. Dyn. Syst. 39, No. 8, 4455-4469 (2019). MSC: 35Q53 35D30 PDF BibTeX XML Cite \textit{G. Hörmann} and \textit{H. Okamoto}, Discrete Contin. Dyn. Syst. 39, No. 8, 4455--4469 (2019; Zbl 1415.35242) Full Text: DOI
Wang, Heng; Zheng, Shuhua Two-dimensional solitary waves and periodic waves on coupled nonlinear electrical transmission lines. (English) Zbl 1418.35068 Anal. Math. Phys. 9, No. 1, 29-42 (2019). MSC: 35C07 35B32 35C08 PDF BibTeX XML Cite \textit{H. Wang} and \textit{S. Zheng}, Anal. Math. Phys. 9, No. 1, 29--42 (2019; Zbl 1418.35068) Full Text: DOI
Dusunceli, Faruk New exponential and complex traveling wave solutions to the Konopelchenko-Dubrovsky model. (English) Zbl 1418.35067 Adv. Math. Phys. 2019, Article ID 7801247, 9 p. (2019). MSC: 35C07 35G55 35C05 PDF BibTeX XML Cite \textit{F. Dusunceli}, Adv. Math. Phys. 2019, Article ID 7801247, 9 p. (2019; Zbl 1418.35067) Full Text: DOI
Darós, Alisson; Arruda, Lynnyngs Kelly On the instability of elliptic traveling wave solutions of the modified Camassa-Holm equation. (English) Zbl 1423.35030 J. Differ. Equations 266, No. 4, 1946-1968 (2019). Reviewer: Nilay Duruk Mutlubas (Tuzla) MSC: 35B35 35C07 35B10 PDF BibTeX XML Cite \textit{A. Darós} and \textit{L. K. Arruda}, J. Differ. Equations 266, No. 4, 1946--1968 (2019; Zbl 1423.35030) Full Text: DOI
Luo, Ting; Liu, Yue; Mi, Yongsheng; Moon, Byungsoo On a shallow-water model with the Coriolis effect. (English) Zbl 1420.35251 J. Differ. Equations 267, No. 5, 3232-3270 (2019). MSC: 35Q35 35B10 35B65 76U05 35C07 35B40 76B15 35Q53 PDF BibTeX XML Cite \textit{T. Luo} et al., J. Differ. Equations 267, No. 5, 3232--3270 (2019; Zbl 1420.35251) Full Text: DOI
de Andrade, Thiago Pinguello; Pastor, Ademir Orbital stability of one-parameter periodic traveling waves for dispersive equations and applications. (English) Zbl 1414.35023 J. Math. Anal. Appl. 475, No. 2, 1242-1275 (2019). MSC: 35B35 35C07 PDF BibTeX XML Cite \textit{T. P. de Andrade} and \textit{A. Pastor}, J. Math. Anal. Appl. 475, No. 2, 1242--1275 (2019; Zbl 1414.35023) Full Text: DOI
Lan, Zhongzhou Periodic, breather and rogue wave solutions for a generalized \((3+1)\)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics. (English) Zbl 1412.35050 Appl. Math. Lett. 94, 126-132 (2019). MSC: 35C07 35G20 35C08 PDF BibTeX XML Cite \textit{Z. Lan}, Appl. Math. Lett. 94, 126--132 (2019; Zbl 1412.35050) Full Text: DOI
Bennett, Jamie J. R.; Sherratt, Jonathan A. How do dispersal rates affect the transition from periodic to irregular spatio-temporal oscillations in invasive predator-prey systems? (English) Zbl 1411.92242 Appl. Math. Lett. 94, 80-86 (2019). MSC: 92D25 92D40 35C07 PDF BibTeX XML Cite \textit{J. J. R. Bennett} and \textit{J. A. Sherratt}, Appl. Math. Lett. 94, 80--86 (2019; Zbl 1411.92242) Full Text: DOI
Li, Jibin; Chen, Guanrong; Deng, Shengfu Smooth exact traveling wave solutions determined by singular nonlinear traveling wave systems: two models. (English) Zbl 1415.34003 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 4, Article ID 1950047, 13 p. (2019). MSC: 34A05 34C37 34C05 35C07 PDF BibTeX XML Cite \textit{J. Li} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 4, Article ID 1950047, 13 p. (2019; Zbl 1415.34003) Full Text: DOI
Geyer, Anna; Pelinovsky, D. Linear instability and uniqueness of the peaked periodic wave in the reduced Ostrovsky equation. (English) Zbl 1412.35031 SIAM J. Math. Anal. 51, No. 2, 1188-1208 (2019). MSC: 35B35 35B10 35G25 35C07 PDF BibTeX XML Cite \textit{A. Geyer} and \textit{D. Pelinovsky}, SIAM J. Math. Anal. 51, No. 2, 1188--1208 (2019; Zbl 1412.35031) Full Text: DOI
Zhu, Wenjing; Xia, Yonghui; Zhang, Bei; Bai, Yuzhen Exact traveling wave solutions and bifurcations of the time-fractional differential equations with applications. (English) Zbl 1411.35061 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 3, Article ID 1950041, 24 p. (2019). MSC: 35C07 35R11 34A05 34C23 PDF BibTeX XML Cite \textit{W. Zhu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 3, Article ID 1950041, 24 p. (2019; Zbl 1411.35061) Full Text: DOI
Postlethwaite, Claire M.; Rucklidge, Alastair M. A trio of heteroclinic bifurcations arising from a model of spatially-extended Rock-Paper-Scissors. (English) Zbl 1412.37055 Nonlinearity 32, No. 4, 1375-1407 (2019). Reviewer: Valery A. Gaiko (Minsk) MSC: 37G15 37C29 34C37 35C07 91A22 92D25 PDF BibTeX XML Cite \textit{C. M. Postlethwaite} and \textit{A. M. Rucklidge}, Nonlinearity 32, No. 4, 1375--1407 (2019; Zbl 1412.37055) Full Text: DOI
Li, Jibin; Chen, Guanrong More on bifurcations and dynamics of traveling wave solutions for a higher-order shallow water wave equation. (English) Zbl 1415.34074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950014, 13 p. (2019). MSC: 34C23 35C07 76B15 34C37 34C05 PDF BibTeX XML Cite \textit{J. Li} and \textit{G. Chen}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950014, 13 p. (2019; Zbl 1415.34074) Full Text: DOI
Liu, Jie; Guan, Junbiao; Feng, Zhaosheng Hopf bifurcation analysis of KdV-Burgers-Kuramoto chaotic system with distributed delay feedback. (English) Zbl 1415.34112 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950011, 13 p. (2019). MSC: 34K18 35Q53 35C07 34K13 34K20 PDF BibTeX XML Cite \textit{J. Liu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 1, Article ID 1950011, 13 p. (2019; Zbl 1415.34112) Full Text: DOI
Bo, Wei-Jian; Lin, Guo; Qi, Yuanwei Propagation dynamics of a time periodic diffusion equation with degenerate nonlinearity. (English) Zbl 1409.35050 Nonlinear Anal., Real World Appl. 45, 376-400 (2019). MSC: 35C07 35B10 35K60 35B40 PDF BibTeX XML Cite \textit{W.-J. Bo} et al., Nonlinear Anal., Real World Appl. 45, 376--400 (2019; Zbl 1409.35050) Full Text: DOI
Sun, Xianbo; Yu, Pei Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. (English) Zbl 07000401 Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 965-987 (2019). MSC: 34C25 34C60 37C27 35C07 34E15 PDF BibTeX XML Cite \textit{X. Sun} and \textit{P. Yu}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 2, 965--987 (2019; Zbl 07000401) Full Text: DOI
Bao, Xiongxiong; Shen, Wenxian; Shen, Zhongwei Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. (English) Zbl 1403.35069 Commun. Pure Appl. Anal. 18, No. 1, 361-396 (2019). MSC: 35C07 45C05 45G15 45M20 47G20 92D25 PDF BibTeX XML Cite \textit{X. Bao} et al., Commun. Pure Appl. Anal. 18, No. 1, 361--396 (2019; Zbl 1403.35069) Full Text: DOI
Leta, Temesgen Desta; Li, Jibin Dynamical behaviour and exact solutions of thirteenth order derivative nonlinear Schrödinger equation. (English) Zbl 07303032 J. Appl. Anal. Comput. 8, No. 1, 250-271 (2018). Reviewer: Hong Li (Jiujiang) MSC: 34A05 34C25 34C05 34C37 34M55 35Q55 35C07 PDF BibTeX XML Cite \textit{T. D. Leta} and \textit{J. Li}, J. Appl. Anal. Comput. 8, No. 1, 250--271 (2018; Zbl 07303032) Full Text: DOI
Gani, M. Osman; Ogawa, Toshiyuki Spiral breakup in a RD system of cardiac excitation due to front-back interaction. (English) Zbl 07213990 Wave Motion 79, 73-83 (2018). MSC: 35K57 35Q92 92B25 65P20 65P30 PDF BibTeX XML Cite \textit{M. O. Gani} and \textit{T. Ogawa}, Wave Motion 79, 73--83 (2018; Zbl 07213990) Full Text: DOI
Ding, Xin; Song, Ming New exact travelling wave solutions for the \((2+1)\)-dimensional Boiti-Leon-Pempinelli equations. (English) Zbl 1432.35041 Far East J. Appl. Math. 100, No. 4, 257-267 (2018). MSC: 35C07 35B65 76B25 35Q51 PDF BibTeX XML Cite \textit{X. Ding} and \textit{M. Song}, Far East J. Appl. Math. 100, No. 4, 257--267 (2018; Zbl 1432.35041) Full Text: DOI
Das, Amiya; Saha, Asit Dynamical survey of the dual power Zakharov-Kuznetsov-Burgers equation with external periodic perturbation. (English) Zbl 1427.35228 Comput. Math. Appl. 76, No. 5, 1174-1183 (2018). MSC: 35Q53 35B35 37G10 35B20 35B32 37M10 35C07 PDF BibTeX XML Cite \textit{A. Das} and \textit{A. Saha}, Comput. Math. Appl. 76, No. 5, 1174--1183 (2018; Zbl 1427.35228) Full Text: DOI
Krasnyuk, Igor B.; Taranets, Roman M.; Chugunova, Marina Dynamic boundary conditions in the interface modeling of binary alloys. (English) Zbl 1431.35195 AIMS Math. 3, No. 3, 409-425 (2018). MSC: 35Q70 35B10 80A22 35B40 80A19 35C07 82C26 35L20 PDF BibTeX XML Cite \textit{I. B. Krasnyuk} et al., AIMS Math. 3, No. 3, 409--425 (2018; Zbl 1431.35195) Full Text: DOI
Wang, Chunjiang; Shu, Ji; Li, Qian; Wang, Yunxiao; Yang, Yuan Bifurcation and exact solutions of coupled nonlinear Klein-Gordon equations. (Chinese. English summary) Zbl 1438.35372 J. Sichuan Norm. Univ., Nat. Sci. 41, No. 6, 735-740 (2018). MSC: 35Q53 35B32 35C07 PDF BibTeX XML Cite \textit{C. Wang} et al., J. Sichuan Norm. Univ., Nat. Sci. 41, No. 6, 735--740 (2018; Zbl 1438.35372) Full Text: DOI
Fu, Haiming; Dai, Zhengde New traveling wave solutions for \( (2+1)\)-dimension breaking soliton equations. (Chinese. English summary) Zbl 1438.35087 J. Jiangsu Norm. Univ., Nat. Sci. 36, No. 4, 49-52 (2018). MSC: 35C07 35Q51 PDF BibTeX XML Cite \textit{H. Fu} and \textit{Z. Dai}, J. Jiangsu Norm. Univ., Nat. Sci. 36, No. 4, 49--52 (2018; Zbl 1438.35087) Full Text: DOI
Wang, Chuanjian; Fang, Hui Bilinear Bäcklund transformations, kink periodic solitary wave and lump wave solutions of the Bogoyavlenskii-Kadomtsev-Petviashvili equation. (English) Zbl 1420.35329 Comput. Math. Appl. 76, No. 1, 1-10 (2018). MSC: 35Q53 35A30 37K40 35C07 35C08 35B10 PDF BibTeX XML Cite \textit{C. Wang} and \textit{H. Fang}, Comput. Math. Appl. 76, No. 1, 1--10 (2018; Zbl 1420.35329) Full Text: DOI
Abdul Hussain, Mudhir Abdul Wahid Lyapunov-Schmidt reduction in the study of bifurcation solutions of nonlinear fractional differential equation. (English) Zbl 1415.35031 Appl. Math. E-Notes 18, 219-226 (2018). MSC: 35B32 35R11 35C07 PDF BibTeX XML Cite \textit{M. A. W. Abdul Hussain}, Appl. Math. E-Notes 18, 219--226 (2018; Zbl 1415.35031) Full Text: Link
Bao, Xiongxiong; Liu, Jia Traveling waves for epidemic models with nonlocal dispersal in time and space periodic habitats. (English) Zbl 1409.92224 Comput. Math. Appl. 75, No. 7, 2404-2413 (2018). MSC: 92D30 35R09 35C07 PDF BibTeX XML Cite \textit{X. Bao} and \textit{J. Liu}, Comput. Math. Appl. 75, No. 7, 2404--2413 (2018; Zbl 1409.92224) Full Text: DOI
Wang, Chunjiang; Shu, Ji; Li, Qian; Wang, Yunxiao; Yang, Yuan Bifurcation and exact travelling wave solutions for Gardner-Kadomtsev-Petviashvili equation. (Chinese. English summary) Zbl 1424.35038 Acta Math. Appl. Sin. 41, No. 2, 215-228 (2018). MSC: 35B32 35C07 PDF BibTeX XML Cite \textit{C. Wang} et al., Acta Math. Appl. Sin. 41, No. 2, 215--228 (2018; Zbl 1424.35038)
Li, Hengyan; Liu, Shaowei Traveling waves in the underdamped Frenkel-Kontorova model. (English) Zbl 1417.34038 Discrete Dyn. Nat. Soc. 2018, Article ID 7081804, 9 p. (2018). MSC: 34A33 34C25 35C07 PDF BibTeX XML Cite \textit{H. Li} and \textit{S. Liu}, Discrete Dyn. Nat. Soc. 2018, Article ID 7081804, 9 p. (2018; Zbl 1417.34038) Full Text: DOI
Lin, T.-S.; Tseluiko, D.; Blyth, M. G.; Kalliadasis, S. Continuation methods for time-periodic travelling-wave solutions to evolution equations. (English) Zbl 1412.65177 Appl. Math. Lett. 86, 291-297 (2018). MSC: 65M99 65T50 35C07 35B10 35B32 76A20 76W05 PDF BibTeX XML Cite \textit{T. S. Lin} et al., Appl. Math. Lett. 86, 291--297 (2018; Zbl 1412.65177) Full Text: DOI
Panov, Evgeny Yu. On the longtime behavior of almost periodic entropy solutions to scalar conservation laws. (English) Zbl 1415.35193 Klingenberg, Christian (ed.) et al., Theory, numerics and applications of hyperbolic problems II, Aachen, Germany, August 2016. Cham: Springer. Springer Proc. Math. Stat. 237, 391-403 (2018). MSC: 35L65 35B40 35C07 PDF BibTeX XML Cite \textit{E. Yu. Panov}, Springer Proc. Math. Stat. 237, 391--403 (2018; Zbl 1415.35193) Full Text: DOI
Carter, Paul; Scheel, Arnd Wave train selection by invasion fronts in the Fitzhugh-Nagumo equation. (English) Zbl 1406.35027 Nonlinearity 31, No. 12, 5536-5572 (2018). MSC: 35B25 35C07 35K57 34C25 PDF BibTeX XML Cite \textit{P. Carter} and \textit{A. Scheel}, Nonlinearity 31, No. 12, 5536--5572 (2018; Zbl 1406.35027) Full Text: DOI
Bridges, Thomas J.; Ratliff, Daniel J. Nonlinear modulation near the Lighthill instability threshold in \(2+1\) Whitham theory. (English) Zbl 1402.35177 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2117, Article ID 20170194, 16 p. (2018). MSC: 35L71 35C07 35B10 35Q53 PDF BibTeX XML Cite \textit{T. J. Bridges} and \textit{D. J. Ratliff}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 376, No. 2117, Article ID 20170194, 16 p. (2018; Zbl 1402.35177) Full Text: DOI
Mittal, R. C.; Rohila, Rajni Traveling and shock wave simulations in a viscous Burgers’ equation with periodic boundary conditions. (English) Zbl 1405.65133 Int. J. Appl. Comput. Math. 4, No. 6, Paper No. 150, 15 p. (2018). MSC: 65M70 65D07 35Q35 35C07 65M06 PDF BibTeX XML Cite \textit{R. C. Mittal} and \textit{R. Rohila}, Int. J. Appl. Comput. Math. 4, No. 6, Paper No. 150, 15 p. (2018; Zbl 1405.65133) Full Text: DOI
Carter, Paul; Doelman, Arjen Traveling stripes in the Klausmeier model of vegetation pattern formation. (English) Zbl 1403.35132 SIAM J. Appl. Math. 78, No. 6, 3213-3237 (2018). Reviewer: Andrey Zahariev (Plovdiv) MSC: 35K57 35C07 35B25 34C25 34C37 35B36 92D40 PDF BibTeX XML Cite \textit{P. Carter} and \textit{A. Doelman}, SIAM J. Appl. Math. 78, No. 6, 3213--3237 (2018; Zbl 1403.35132) Full Text: DOI