Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Dhar, Sougata; Kong, Lingju Existence of multiple anti-periodic solutions for a higher order nonlinear difference equation. (English) Zbl 07302516 Mediterr. J. Math. 18, No. 1, Paper No. 23, 16 p. (2021). Reviewer: Jonathan Hoseana (Bandung) MSC: 39A23 39A12 47J30 58E05 PDF BibTeX XML Cite \textit{S. Dhar} and \textit{L. Kong}, Mediterr. J. Math. 18, No. 1, Paper No. 23, 16 p. (2021; Zbl 07302516) Full Text: DOI
Negreanu, M.; Vargas, A. M. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. (English) Zbl 07299005 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021). MSC: 35B40 35K51 35K59 92C17 92D25 35B10 65M06 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{A. M. Vargas}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021; Zbl 07299005) Full Text: DOI
Kocic, Vlajko L.; Kent, Candace M. Nonlinear nonautonomous difference equations. Global behavior and applications (to appear). (English) Zbl 07002216 De Gruyter Series in Mathematics and Life Sciences. Berlin: De Gruyter (ISBN 978-3-11-048205-8/hbk; 978-3-11-048302-4/ebook). xii, 300 p. (2021). MSC: 39-02 39A05 39A23 39A22 PDF BibTeX XML Cite \textit{V. L. Kocic} and \textit{C. M. Kent}, Nonlinear nonautonomous difference equations. Global behavior and applications (to appear). Berlin: De Gruyter (2021; Zbl 07002216)
Larraín-Hubach, Andrés; Raffoul, Youssef N. Boundedness, periodicity and stability in nonlinear delay differential equations. (English) Zbl 07312890 Adv. Dyn. Syst. Appl. 15, No. 1, 29-37 (2020). MSC: 39A10 PDF BibTeX XML Cite \textit{A. Larraín-Hubach} and \textit{Y. N. Raffoul}, Adv. Dyn. Syst. Appl. 15, No. 1, 29--37 (2020; Zbl 07312890) Full Text: Link
Kong, Lingju; Wang, Min Multiple and particular solutions of a second order discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 07307860 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 47, 13 p. (2020). MSC: 39A10 34B15 49K30 PDF BibTeX XML Cite \textit{L. Kong} and \textit{M. Wang}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 47, 13 p. (2020; Zbl 07307860) Full Text: DOI
Dohnal, Tomáš; Rudolf, Daniel NLS approximation for wavepackets in periodic cubically nonlinear wave problems in \(\mathbb{R}^d\). (English) Zbl 07304781 Appl. Anal. 99, No. 10, 1685-1723 (2020). MSC: 35Q55 35Q60 35L71 41A60 35C08 65N25 65N06 65L06 65T50 PDF BibTeX XML Cite \textit{T. Dohnal} and \textit{D. Rudolf}, Appl. Anal. 99, No. 10, 1685--1723 (2020; Zbl 07304781) Full Text: DOI
Dilip, D. S.; Philip, Tony Global stability, periodicity and boundedness behavior of a difference equation. (English) Zbl 07296167 Southeast Asian Bull. Math. 44, No. 3, 315-323 (2020). MSC: 39A30 39A23 39A22 PDF BibTeX XML Cite \textit{D. S. Dilip} and \textit{T. Philip}, Southeast Asian Bull. Math. 44, No. 3, 315--323 (2020; Zbl 07296167)
Cao, Mingyuan; Yang, Yueting; Zhang, Yanyu; Huang, Qingdao Dynamic properties of nonlinear difference equation with periodic coefficients. (Chinese. English summary) Zbl 07295370 J. Jilin Univ., Sci. 58, No. 3, 457-462 (2020). MSC: 39A23 39A30 PDF BibTeX XML Cite \textit{M. Cao} et al., J. Jilin Univ., Sci. 58, No. 3, 457--462 (2020; Zbl 07295370) Full Text: DOI
Cheng, Qi; Deng, Shengfu Flip bifurcations of two systems of difference equations. (English) Zbl 07292692 Math. Methods Appl. Sci. 43, No. 17, 9582-9597 (2020). MSC: 39A28 39A23 39A30 PDF BibTeX XML Cite \textit{Q. Cheng} and \textit{S. Deng}, Math. Methods Appl. Sci. 43, No. 17, 9582--9597 (2020; Zbl 07292692) Full Text: DOI
Lindstrom, Michael R.; Bertozzi, Andrea L. Qualitative features of a nonlinear, nonlocal, agent-based PDE model with applications to homelessness. (English) Zbl 07291076 Math. Models Methods Appl. Sci. 30, No. 10, 1863-1891 (2020). MSC: 35Q91 91D10 91B69 35B10 35B35 35B50 35K55 65M20 65N06 91-08 PDF BibTeX XML Cite \textit{M. R. Lindstrom} and \textit{A. L. Bertozzi}, Math. Models Methods Appl. Sci. 30, No. 10, 1863--1891 (2020; Zbl 07291076) Full Text: DOI
Ohmori, Shousuke; Yamazaki, Yoshihiro Ultradiscrete bifurcations for one dimensional dynamical systems. (English) Zbl 07290179 J. Math. Phys. 61, No. 12, 122702, 12 p. (2020). MSC: 39A28 37G10 37G15 PDF BibTeX XML Cite \textit{S. Ohmori} and \textit{Y. Yamazaki}, J. Math. Phys. 61, No. 12, 122702, 12 p. (2020; Zbl 07290179) Full Text: DOI
Klopp, F.; Fedotov, A. A. On the hierarchical behavior of solutions of the Maryland equation in the semiclassical approximation. (English. Russian original) Zbl 07289087 Math. Notes 108, No. 6, 906-910 (2020); translation from Mat. Zametki 108, No. 6, 941-946 (2020). MSC: 81Q05 39A12 39A06 37C55 93A13 PDF BibTeX XML Cite \textit{F. Klopp} and \textit{A. A. Fedotov}, Math. Notes 108, No. 6, 906--910 (2020; Zbl 07289087); translation from Mat. Zametki 108, No. 6, 941--946 (2020) Full Text: DOI
Rouhani, B. Djafar; Piranfar, M. Rahimi Asymptotic behavior and periodic solutions to a first order expansive type difference equation. (English) Zbl 07285389 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 325-337 (2020). MSC: 47H05 47H25 39A12 37A30 39A23 PDF BibTeX XML Cite \textit{B. D. Rouhani} and \textit{M. R. Piranfar}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 325--337 (2020; Zbl 07285389) Full Text: Link
Abo-Zeid, R. On a rational second order difference equation with quadratic term. (English) Zbl 07285387 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 299-308 (2020). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 299--308 (2020; Zbl 07285387) Full Text: Link
Yakhshimuratov, Alisher Bekchanovich; Babajanov, Bazar Atajanovich Integration of equations of Kaup system kind with self-consistent source in class of periodic functions. (English) Zbl 07281894 Ufim. Mat. Zh. 12, No. 1, 104-114 (2020) and Ufa Math. J. 12, No. 1, 103-113 (2020). MSC: 39A23 35Q51 34K13 34K29 PDF BibTeX XML Cite \textit{A. B. Yakhshimuratov} and \textit{B. A. Babajanov}, Ufim. Mat. Zh. 12, No. 1, 104--114 (2020; Zbl 07281894) Full Text: DOI MNR
Huang, Ying Sue; Knopf, Peter M. Periodic pattern repetition for unbounded solutions to finite difference equations. (English) Zbl 1451.39012 J. Difference Equ. Appl. 26, No. 7, 871-912 (2020). MSC: 39A23 39A22 PDF BibTeX XML Cite \textit{Y. S. Huang} and \textit{P. M. Knopf}, J. Difference Equ. Appl. 26, No. 7, 871--912 (2020; Zbl 1451.39012) Full Text: DOI
Yan, Yan; Sugie, Jitsuro Global attractivity of a unique positive periodic solution for a first-order nonlinear difference equation with time delays. (English) Zbl 1451.39018 J. Difference Equ. Appl. 26, No. 6, 855-870 (2020). MSC: 39A60 39A30 92C37 47H10 PDF BibTeX XML Cite \textit{Y. Yan} and \textit{J. Sugie}, J. Difference Equ. Appl. 26, No. 6, 855--870 (2020; Zbl 1451.39018) Full Text: DOI
Chugunova, Marina A.; Campbell, Sue Ann Difference population equation with variable Allee effect and periodic carrying capacity. (English) Zbl 1451.39017 J. Difference Equ. Appl. 26, No. 6, 753-778 (2020). MSC: 39A60 39A23 39A30 92D25 PDF BibTeX XML Cite \textit{M. A. Chugunova} and \textit{S. A. Campbell}, J. Difference Equ. Appl. 26, No. 6, 753--778 (2020; Zbl 1451.39017) Full Text: DOI
Luís, Rafael; Mendonça, Sandra A note on global stability in the periodic logistic map. (English) Zbl 07272956 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4211-4220 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A30 39A23 37C25 37C75 PDF BibTeX XML Cite \textit{R. Luís} and \textit{S. Mendonça}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4211--4220 (2020; Zbl 07272956) Full Text: DOI
Bula, Inese; Radin, Michael A. Eventually periodic solutions of single neuron model. (English) Zbl 1451.39010 Nonlinear Anal., Model. Control 25, No. 6, 903-918 (2020). MSC: 39A23 39A30 39A60 92C20 PDF BibTeX XML Cite \textit{I. Bula} and \textit{M. A. Radin}, Nonlinear Anal., Model. Control 25, No. 6, 903--918 (2020; Zbl 1451.39010) Full Text: DOI
Kent, Candace M. A modified second-order Collatz equation as a mathematical model of bipolar disorder. (English) Zbl 07271999 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 153-166 (2020). MSC: 39A60 39A23 92F05 PDF BibTeX XML Cite \textit{C. M. Kent}, in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 153--166 (2020; Zbl 07271999) Full Text: DOI
Sun, Y. X.; Tian, Z. F. High-order upwind compact finite-difference lattice Boltzmann method for viscous incompressible flows. (English) Zbl 1451.76086 Comput. Math. Appl. 80, No. 7, 1858-1872 (2020). MSC: 76M20 76M28 76D05 76P05 PDF BibTeX XML Cite \textit{Y. X. Sun} and \textit{Z. F. Tian}, Comput. Math. Appl. 80, No. 7, 1858--1872 (2020; Zbl 1451.76086) Full Text: DOI
Solis, Francisco J.; Sotolongo, Alina On the unresolved cases of convergence of bidimensional slow discrete dynamical systems. (English) Zbl 07270819 Differ. Equ. Dyn. Syst. 28, No. 4, 865-887 (2020). MSC: 37C25 39A10 39A22 PDF BibTeX XML Cite \textit{F. J. Solis} and \textit{A. Sotolongo}, Differ. Equ. Dyn. Syst. 28, No. 4, 865--887 (2020; Zbl 07270819) Full Text: DOI
Ding, Liang; Wei, Jinlong Notes on nontrivial multiple periodic solutions for second-order discrete Hamiltonian system. (English) Zbl 1451.39011 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4393-4409 (2020). MSC: 39A23 39A30 PDF BibTeX XML Cite \textit{L. Ding} and \textit{J. Wei}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4393--4409 (2020; Zbl 1451.39011) Full Text: DOI
Wang, Jingjing; Lu, Yanqiong Optimal conditions for the existence of positive solutions to periodic boundary value problems with second order difference equations. (Chinese. English summary) Zbl 07266734 J. East China Norm. Univ., Nat. Sci. Ed., No. 2, 41-49 (2020). MSC: 34B18 39A23 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Y. Lu}, J. East China Norm. Univ., Nat. Sci. Ed. , No. 2, 41--49 (2020; Zbl 07266734) Full Text: DOI
Sugie, Jitsuro; Yan, Yan Existence of multiple positive periodic solutions for discrete hematopoiesis models with a unimodal production function. (English) Zbl 1451.37113 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105273, 16 p. (2020). MSC: 37N25 39A23 39A60 92C37 PDF BibTeX XML Cite \textit{J. Sugie} and \textit{Y. Yan}, Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105273, 16 p. (2020; Zbl 1451.37113) Full Text: DOI
Abualrub, S.; Aloqeili, M. Dynamics of the system of difference equations \(x_{n+1} = A+\frac{y_{n-k}}{y_n}\), \(y_{n+1} = B+\frac{x_{n-k}}{x_n}\). (English) Zbl 1450.39003 Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 69, 19 p. (2020). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{S. Abualrub} and \textit{M. Aloqeili}, Qual. Theory Dyn. Syst. 19, No. 2, Paper No. 69, 19 p. (2020; Zbl 1450.39003) Full Text: DOI
Deng, Guifeng; Li, Xianyi; Lu, Qiuying; Qian, Lili Dichotomy between a generalized Lyness difference equation with period-two coefficients and its perturbation. (English) Zbl 07258075 Appl. Math. Lett. 109, Article ID 106522, 7 p. (2020). MSC: 39A30 39A20 39A23 PDF BibTeX XML Cite \textit{G. Deng} et al., Appl. Math. Lett. 109, Article ID 106522, 7 p. (2020; Zbl 07258075) Full Text: DOI
Zhou, Ben-Xing; Liu, Chungen Applications of Conley index theory on difference equations with non-resonance. (English) Zbl 07258063 Appl. Math. Lett. 108, Article ID 106500, 5 p. (2020). MSC: 39A23 37B30 PDF BibTeX XML Cite \textit{B.-X. Zhou} and \textit{C. Liu}, Appl. Math. Lett. 108, Article ID 106500, 5 p. (2020; Zbl 07258063) Full Text: DOI
Bouzar, Chikh; Tchouar, Fatima Zahra Asymptotic almost automorphy of functions and distributions. (English) Zbl 1448.42016 Ural Math. J. 6, No. 1, 54-70 (2020). MSC: 42A75 34C25 PDF BibTeX XML Cite \textit{C. Bouzar} and \textit{F. Z. Tchouar}, Ural Math. J. 6, No. 1, 54--70 (2020; Zbl 1448.42016) Full Text: DOI MNR
Stoikidis, Anastasios; Papaschinopoulos, Garyfalos Study of a system of difference equations with maximum. (English) Zbl 07254949 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 39, 14 p. (2020). MSC: 39A10 PDF BibTeX XML Cite \textit{A. Stoikidis} and \textit{G. Papaschinopoulos}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 39, 14 p. (2020; Zbl 07254949) Full Text: DOI
Temple, Blake; Young, Robin Inversion of a non-uniform difference operator. (English) Zbl 07252763 Methods Appl. Anal. 27, No. 1, 65-86 (2020). MSC: 39A70 35B10 35L60 76N30 35Q31 PDF BibTeX XML Cite \textit{B. Temple} and \textit{R. Young}, Methods Appl. Anal. 27, No. 1, 65--86 (2020; Zbl 07252763) Full Text: DOI
Glyzin, S. D.; Preobrazhenskaya, M. M. Mechanism of appearing complex relaxation oscillations in a system of two synaptically coupled neurons. (English. Russian original) Zbl 1452.34075 J. Math. Sci., New York 249, No. 6, 894-910 (2020); translation from Probl. Mat. Anal. 103, 71-84 (2020). Reviewer: Robert Vrabel (Trnava) MSC: 34K13 34K26 34K60 92C20 PDF BibTeX XML Cite \textit{S. D. Glyzin} and \textit{M. M. Preobrazhenskaya}, J. Math. Sci., New York 249, No. 6, 894--910 (2020; Zbl 1452.34075); translation from Probl. Mat. Anal. 103, 71--84 (2020) Full Text: DOI
Andres, Jan Coexistence of random subharmonic solutions of random impulsive differential equations and inclusions on a circle. (English) Zbl 1451.37074 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050152, 11 p. (2020). MSC: 37H10 34A37 34F05 PDF BibTeX XML Cite \textit{J. Andres}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 10, Article ID 2050152, 11 p. (2020; Zbl 1451.37074) Full Text: DOI
Turan, Mehmet On the invariant manifolds of the fixed point of a second-order nonlinear difference equation. (English) Zbl 1451.39015 J. Dyn. Control Syst. 26, No. 4, 673-684 (2020). MSC: 39A30 37C25 37D10 PDF BibTeX XML Cite \textit{M. Turan}, J. Dyn. Control Syst. 26, No. 4, 673--684 (2020; Zbl 1451.39015) Full Text: DOI
Khan, Abdul Qadeer; Sharif, Kashif Global dynamics, forbidden set, and transcritical bifurcation of a one-dimensional discrete-time laser model. (English) Zbl 1450.37047 Math. Methods Appl. Sci. 43, No. 7, 4409-4421 (2020). MSC: 37G35 37C25 39A30 39A28 PDF BibTeX XML Cite \textit{A. Q. Khan} and \textit{K. Sharif}, Math. Methods Appl. Sci. 43, No. 7, 4409--4421 (2020; Zbl 1450.37047) Full Text: DOI
Samei, Mohammad Esmael; Yang, Wengui Existence of solutions for \(k\)-dimensional system of multi-term fractional \(q\)-integro-differential equations under anti-periodic boundary conditions via quantum calculus. (English) Zbl 07242888 Math. Methods Appl. Sci. 43, No. 7, 4360-4382 (2020). MSC: 45J05 26A33 39A12 39A13 PDF BibTeX XML Cite \textit{M. E. Samei} and \textit{W. Yang}, Math. Methods Appl. Sci. 43, No. 7, 4360--4382 (2020; Zbl 07242888) Full Text: DOI
Ma, Li On the kinetics of Hadamard-type fractional differential systems. (English) Zbl 07241998 Fract. Calc. Appl. Anal. 23, No. 2, 553-570 (2020). MSC: 26A33 34D08 39A24 34A08 PDF BibTeX XML Cite \textit{L. Ma}, Fract. Calc. Appl. Anal. 23, No. 2, 553--570 (2020; Zbl 07241998) Full Text: DOI
Frei, S.; Richter, T. Efficient approximation of flow problems with multiple scales in time. (English) Zbl 1446.65065 Multiscale Model. Simul. 18, No. 2, 942-969 (2020). MSC: 65M06 65N30 65M12 65L20 65L70 76D05 35B45 35Q30 PDF BibTeX XML Cite \textit{S. Frei} and \textit{T. Richter}, Multiscale Model. Simul. 18, No. 2, 942--969 (2020; Zbl 1446.65065) Full Text: DOI
Preobrazhenskaya, M. M. A relay Mackey-Glass model with two delays. (English. Russian original) Zbl 1448.92070 Theor. Math. Phys. 203, No. 1, 524-534 (2020); translation from Teor. Mat. Fiz. 203, No. 1, 106-118 (2020). MSC: 92C37 92D25 34K13 PDF BibTeX XML Cite \textit{M. M. Preobrazhenskaya}, Theor. Math. Phys. 203, No. 1, 524--534 (2020; Zbl 1448.92070); translation from Teor. Mat. Fiz. 203, No. 1, 106--118 (2020) Full Text: DOI
Gümüş, Mehmet The periodic character in a higher order difference equation with delays. (English) Zbl 1445.39010 Math. Methods Appl. Sci. 43, No. 3, 1112-1123 (2020). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{M. Gümüş}, Math. Methods Appl. Sci. 43, No. 3, 1112--1123 (2020; Zbl 1445.39010) Full Text: DOI
Bastien, G.; Rogalski, M. Behaviour of orbits and periods of a two dimensional dynamical system associated to a special QRT-map. (English) Zbl 07220260 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 81-130 (2020). MSC: 39A36 39A20 14H52 14H70 37C55 PDF BibTeX XML Cite \textit{G. Bastien} and \textit{M. Rogalski}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 81--130 (2020; Zbl 07220260) Full Text: Link
Kostrov, Yevgeniy; Kudlak, Zachary; Vernon, Patrick On the boundedness character of a rational system of difference equations with non-constant coefficients. (English) Zbl 1442.39011 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 312, 267-295 (2020). MSC: 39A22 39A23 PDF BibTeX XML Cite \textit{Y. Kostrov} et al., Springer Proc. Math. Stat. 312, 267--295 (2020; Zbl 1442.39011) Full Text: DOI
Bohner, Martin; Streipert, Sabrina An integrable SIS model on time scales. (English) Zbl 1437.92111 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 312, 187-200 (2020). MSC: 92D30 39A23 39A30 PDF BibTeX XML Cite \textit{M. Bohner} and \textit{S. Streipert}, Springer Proc. Math. Stat. 312, 187--200 (2020; Zbl 1437.92111) Full Text: DOI
Tikjha, Wirot; Gardini, Laura Bifurcation sequences and multistability in a two-dimensional piecewise linear map. (English) Zbl 07214509 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2030014, 21 p. (2020). Reviewer: Dieter Erle (Dortmund) MSC: 37G15 37G35 37G10 39A28 PDF BibTeX XML Cite \textit{W. Tikjha} and \textit{L. Gardini}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 6, Article ID 2030014, 21 p. (2020; Zbl 07214509) Full Text: DOI
Segura, Juan; Hilker, Frank M.; Franco, Daniel Degenerate period adding bifurcation structure of one-dimensional bimodal piecewise linear maps. (English) Zbl 1444.37035 SIAM J. Appl. Math. 80, No. 3, 1356-1376 (2020). MSC: 37E05 37N25 37G35 39A28 92D40 PDF BibTeX XML Cite \textit{J. Segura} et al., SIAM J. Appl. Math. 80, No. 3, 1356--1376 (2020; Zbl 1444.37035) Full Text: DOI
Puvaneswari, A.; Valanarasu, T.; Ramesh Babu, A. A system of singularly perturbed periodic boundary value problem: hybrid difference scheme. (English) Zbl 1442.65133 Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 86, 24 p. (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65L10 65L11 65L60 34B16 PDF BibTeX XML Cite \textit{A. Puvaneswari} et al., Int. J. Appl. Comput. Math. 6, No. 3, Paper No. 86, 24 p. (2020; Zbl 1442.65133) Full Text: DOI
Prasad, K. R.; Khuddush, Md. Existence and uniform asymptotic stability of positive almost periodic solutions for three-species Lotka-Volterra competitive system on time scales. (English) Zbl 1444.92096 Asian-Eur. J. Math. 13, No. 3, Article ID 2050058, 24 p. (2020). MSC: 92D25 39A24 PDF BibTeX XML Cite \textit{K. R. Prasad} and \textit{Md. Khuddush}, Asian-Eur. J. Math. 13, No. 3, Article ID 2050058, 24 p. (2020; Zbl 1444.92096) Full Text: DOI
Abo-Zeid, Raafat On the solutions of a higher order difference equation. (English) Zbl 1440.39001 Georgian Math. J. 27, No. 2, 165-175 (2020). MSC: 39A10 39A20 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Georgian Math. J. 27, No. 2, 165--175 (2020; Zbl 1440.39001) Full Text: DOI
Kong, Lingju; Wang, Min Existence of solutions for a second order discrete boundary value problem with mixed periodic boundary conditions. (English) Zbl 1440.39005 Appl. Math. Lett. 102, Article ID 106138, 7 p. (2020). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{L. Kong} and \textit{M. Wang}, Appl. Math. Lett. 102, Article ID 106138, 7 p. (2020; Zbl 1440.39005) Full Text: DOI
Mandal, Arindam; Tiwari, Pankaj Kumar; Samanta, Sudip; Venturino, Ezio; Pal, Samares A nonautonomous model for the effect of environmental toxins on plankton dynamics. (English) Zbl 1434.37051 Nonlinear Dyn. 99, No. 4, 3373-3405 (2020). MSC: 37N25 92D30 37H10 PDF BibTeX XML Cite \textit{A. Mandal} et al., Nonlinear Dyn. 99, No. 4, 3373--3405 (2020; Zbl 1434.37051) Full Text: DOI
Shipman, Stephen P. Reducible Fermi surfaces for non-symmetric bilayer quantum-graph operators. (English) Zbl 07200131 J. Spectr. Theory 10, No. 1, 33-72 (2020). Reviewer: Miyeon Kwon (Platteville) MSC: 47A75 47B25 39A70 39A14 47B39 47B40 39A12 PDF BibTeX XML Cite \textit{S. P. Shipman}, J. Spectr. Theory 10, No. 1, 33--72 (2020; Zbl 07200131) Full Text: DOI
Wang, Chao; Agarwal, Ravi P.; O’Regan, Donal; Sakthivel, Rathinasamy A computation method of Hausdorff distance for translation time scales. (English) Zbl 1445.26021 Appl. Anal. 99, No. 7, 1218-1247 (2020). Reviewer: Seth Kermausuor (Montgomery) MSC: 26E70 33E30 41A30 43A60 PDF BibTeX XML Cite \textit{C. Wang} et al., Appl. Anal. 99, No. 7, 1218--1247 (2020; Zbl 1445.26021) Full Text: DOI
Wang, Shaohong; Long, Yuhua Multiple solutions of fourth-order functional difference equation with periodic boundary conditions. (English) Zbl 1439.39007 Appl. Math. Lett. 104, Article ID 106292, 7 p. (2020). MSC: 39A27 39A22 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Y. Long}, Appl. Math. Lett. 104, Article ID 106292, 7 p. (2020; Zbl 1439.39007) Full Text: DOI
Aarset, Christian; Pötzsche, Christian Bifurcations in periodic integrodifference equations in \(C(\Omega)\): II. Discrete torus bifurcations. (English) Zbl 1441.39011 Commun. Pure Appl. Anal. 19, No. 4, 1847-1874 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A28 37G15 39A23 37N25 92D25 PDF BibTeX XML Cite \textit{C. Aarset} and \textit{C. Pötzsche}, Commun. Pure Appl. Anal. 19, No. 4, 1847--1874 (2020; Zbl 1441.39011) Full Text: DOI
Breden, Maxime; Kuehn, Christian Computing invariant sets of random differential equations using polynomial chaos. (English) Zbl 1441.37057 SIAM J. Appl. Dyn. Syst. 19, No. 1, 577-618 (2020). Reviewer: Carlo Laing (Auckland) MSC: 37H10 37H05 37M21 37M22 34F05 60H35 41A58 65C30 PDF BibTeX XML Cite \textit{M. Breden} and \textit{C. Kuehn}, SIAM J. Appl. Dyn. Syst. 19, No. 1, 577--618 (2020; Zbl 1441.37057) Full Text: DOI
Folly-Gbetoula, M.; Nyirenda, D. A generalized two-dimensional system of higher order recursive sequences. (English) Zbl 1436.39004 J. Difference Equ. Appl. 26, No. 2, 244-260 (2020). MSC: 39A10 39A13 39A23 PDF BibTeX XML Cite \textit{M. Folly-Gbetoula} and \textit{D. Nyirenda}, J. Difference Equ. Appl. 26, No. 2, 244--260 (2020; Zbl 1436.39004) Full Text: DOI
Blé, Gamaliel; Dela-Rosa, Miguel Angel; Loreto-Hernández, Iván Neimark-Sacker bifurcation analysis in an intraguild predation model with general functional responses. (English) Zbl 1439.37085 J. Difference Equ. Appl. 26, No. 2, 223-243 (2020). MSC: 37N25 37G15 34C23 39A28 92D25 PDF BibTeX XML Cite \textit{G. Blé} et al., J. Difference Equ. Appl. 26, No. 2, 223--243 (2020; Zbl 1439.37085) Full Text: DOI
Hamaya, Yoshihiro \(AP_r\) solutions for linear functional difference equations with infinite delay with/without Favard’s property. (English) Zbl 1444.39012 J. Difference Equ. Appl. 26, No. 3, 328-352 (2020). Reviewer: Khanlar R. Mamedov (Mersin) MSC: 39A24 39A06 39A22 39A10 39A30 PDF BibTeX XML Cite \textit{Y. Hamaya}, J. Difference Equ. Appl. 26, No. 3, 328--352 (2020; Zbl 1444.39012) Full Text: DOI
Ferreira, Luis Simão; Sanchez Rodrigues, Luis On a class of difference equations involving a linear map with two dimensional kernel. (English) Zbl 1449.39009 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 8, 14 p. (2020). MSC: 39A23 PDF BibTeX XML Cite \textit{L. S. Ferreira} and \textit{L. Sanchez Rodrigues}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 8, 14 p. (2020; Zbl 1449.39009) Full Text: DOI
Qian, Chuanxi; Smith, Justin On quasi-periodic solutions of forced higher order nonlinear difference equations. (English) Zbl 1449.39012 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 6, 20 p. (2020). MSC: 39A24 39A60 39A23 92B05 PDF BibTeX XML Cite \textit{C. Qian} and \textit{J. Smith}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 6, 20 p. (2020; Zbl 1449.39012) Full Text: DOI
Hilker, Frank M.; Sun, T. A.; Allen, L. J. S.; Hamelin, F. M. Separate seasons of infection and reproduction can lead to multi-year population cycles. (English) Zbl 1430.92103 J. Theor. Biol. 489, Article ID 110158, 10 p. (2020). MSC: 92D30 92D25 92D40 PDF BibTeX XML Cite \textit{F. M. Hilker} et al., J. Theor. Biol. 489, Article ID 110158, 10 p. (2020; Zbl 1430.92103) Full Text: DOI
Iqbal, Sehar; Zegeling, Paul Andries An efficient nonlinear multigrid scheme for 2D boundary value problems. (English) Zbl 1433.65204 Appl. Math. Comput. 372, Article ID 124898, 15 p. (2020). MSC: 65M55 65M06 35B10 35B15 35B32 35J25 35J91 65L10 35P30 PDF BibTeX XML Cite \textit{S. Iqbal} and \textit{P. A. Zegeling}, Appl. Math. Comput. 372, Article ID 124898, 15 p. (2020; Zbl 1433.65204) Full Text: DOI
Al-Ghassani, Asma S.; AlSharawi, Ziyad The effect of maps permutation on the global attractor of a periodic Beverton-Holt model. (English) Zbl 1433.39001 Appl. Math. Comput. 370, Article ID 124905, 13 p. (2020). MSC: 39A10 92D25 37E15 37N25 PDF BibTeX XML Cite \textit{A. S. Al-Ghassani} and \textit{Z. AlSharawi}, Appl. Math. Comput. 370, Article ID 124905, 13 p. (2020; Zbl 1433.39001) Full Text: DOI
Robinson, Stephen B.; Schmitt, Klaus Discrete resonance problems subject to periodic forcing. (English) Zbl 1447.39006 Proc. Am. Math. Soc. 148, No. 2, 471-477 (2020). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A27 39A12 39A22 39A24 PDF BibTeX XML Cite \textit{S. B. Robinson} and \textit{K. Schmitt}, Proc. Am. Math. Soc. 148, No. 2, 471--477 (2020; Zbl 1447.39006) Full Text: DOI
Gasull, Armengol; Mañosa, Víctor Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. (English) Zbl 1432.37045 Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 651-670 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 37C25 39A23 13P15 34D23 70F15 37C05 PDF BibTeX XML Cite \textit{A. Gasull} and \textit{V. Mañosa}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 2, 651--670 (2020; Zbl 1432.37045) Full Text: DOI arXiv
Gümüş, Mehmet Analysis of periodicity for a new class of non-linear difference equations by using a new method. (English) Zbl 1438.39013 Electron. J. Math. Analysis Appl. 8, No. 1, 109-116 (2020). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{M. Gümüş}, Electron. J. Math. Analysis Appl. 8, No. 1, 109--116 (2020; Zbl 1438.39013) Full Text: Link
Xu, Li; Cui, Debiao Positive periodic solutions of second order singular difference systems. (Chinese. English summary) Zbl 07266297 Acta Math. Appl. Sin. 42, No. 3, 289-296 (2019). MSC: 39A23 PDF BibTeX XML Cite \textit{L. Xu} and \textit{D. Cui}, Acta Math. Appl. Sin. 42, No. 3, 289--296 (2019; Zbl 07266297)
Saito, Kaori Periodic solutions in gross-substitute discrete dynamical systems. (English) Zbl 1452.39003 Lib. Math. (N.S.) 39, No. 2, 1-12 (2019). MSC: 39A23 39A30 39A60 37N40 PDF BibTeX XML Cite \textit{K. Saito}, Lib. Math. (N.S.) 39, No. 2, 1--12 (2019; Zbl 1452.39003) Full Text: DOI
Lee, Seunggyu; Shin, Jaemin Energy stable compact scheme for Cahn-Hilliard equation with periodic boundary condition. (English) Zbl 1442.65167 Comput. Math. Appl. 77, No. 1, 189-198 (2019). MSC: 65M06 65M12 35B10 35K25 35K59 82C26 PDF BibTeX XML Cite \textit{S. Lee} and \textit{J. Shin}, Comput. Math. Appl. 77, No. 1, 189--198 (2019; Zbl 1442.65167) Full Text: DOI
Cao, Junfei; Samet, Bessem; Zhou, Yong Asymptotically almost periodic mild solutions to a class of Weyl-like fractional difference equations. (English) Zbl 07254385 Adv. Difference Equ. 2019, Paper No. 371, 33 p. (2019). MSC: 39A14 34D05 PDF BibTeX XML Cite \textit{J. Cao} et al., Adv. Difference Equ. 2019, Paper No. 371, 33 p. (2019; Zbl 07254385) Full Text: DOI
Su, Qianqian Dynamical behavior of a difference competitive system incorporating harvesting. (Chinese. English summary) Zbl 1449.39013 J. Biomath. 34, No. 2, 239-249 (2019). MSC: 39A24 39A30 39A60 92D25 PDF BibTeX XML Cite \textit{Q. Su}, J. Biomath. 34, No. 2, 239--249 (2019; Zbl 1449.39013)
Long, Yan Global structure of positive solutions of periodic boundary value problem of difference equation involving \(\Phi \)-Laplacian operator. (Chinese. English summary) Zbl 07234140 J. Sichuan Univ., Nat. Sci. Ed. 56, No. 5, 827-832 (2019). MSC: 39 34B18 39A05 PDF BibTeX XML Cite \textit{Y. Long}, J. Sichuan Univ., Nat. Sci. Ed. 56, No. 5, 827--832 (2019; Zbl 07234140) Full Text: DOI
Raffoul, Youssef N.; Yankson, Ernest Positive periodic solutions of functional discrete systems with a parameter. (English) Zbl 1441.39008 Cubo 21, No. 1, 79-94 (2019). MSC: 39A23 39A10 92D25 PDF BibTeX XML Cite \textit{Y. N. Raffoul} and \textit{E. Yankson}, Cubo 21, No. 1, 79--94 (2019; Zbl 1441.39008) Full Text: DOI
Cánovas, Jose S. On the periodic Ricker equation. (English) Zbl 1441.39007 Area, Iván (ed.) et al., Nonlinear analysis and boundary value problems. NABVP 2018, Santiago de Compostela, Spain, September 4–7, 2018. Proceedings of the international conference. Dedicated to Juan J. Nieto on the occasion of his 60th birthday. Cham: Springer. Springer Proc. Math. Stat. 292, 121-130 (2019). MSC: 39A23 37B40 37C05 PDF BibTeX XML Cite \textit{J. S. Cánovas}, Springer Proc. Math. Stat. 292, 121--130 (2019; Zbl 1441.39007) Full Text: DOI
Hasil, Petr; Veselý, Michal Asymptotically almost periodic solutions of limit periodic difference systems with coefficients from commutative groups. (English) Zbl 1452.39002 Topol. Methods Nonlinear Anal. 54, No. 2A, 515-535 (2019). Reviewer: Jonathan Hoseana (Bandung) MSC: 39A23 39A22 39A30 PDF BibTeX XML Cite \textit{P. Hasil} and \textit{M. Veselý}, Topol. Methods Nonlinear Anal. 54, No. 2A, 515--535 (2019; Zbl 1452.39002) Full Text: DOI Euclid
Yan, Yan; Sugie, Jitsuro Existence regions of positive periodic solutions for a discrete hematopoiesis model with unimodal production functions. (English) Zbl 1450.37091 Appl. Math. Modelling 68, 152-168 (2019). Reviewer: Andrey Zahariev (Plovdiv) MSC: 37N25 39A23 92C37 92C17 PDF BibTeX XML Cite \textit{Y. Yan} and \textit{J. Sugie}, Appl. Math. Modelling 68, 152--168 (2019; Zbl 1450.37091) Full Text: DOI
Andres, Jan; Pennequin, Denis Note on limit-periodic solutions of the difference equation \(x_{t+1} - [h(x_t)+\lambda] x_t= r_t\), \(\lambda >1\). (English) Zbl 1434.39009 Axioms 8, No. 1, Paper No. 19, 10 p. (2019). MSC: 39A24 PDF BibTeX XML Cite \textit{J. Andres} and \textit{D. Pennequin}, Axioms 8, No. 1, Paper No. 19, 10 p. (2019; Zbl 1434.39009) Full Text: DOI
Zhang, Tianwei; Xu, Lijun Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays. (English) Zbl 07177911 Kybernetika 55, No. 4, 690-713 (2019). Reviewer: Syed Abbas (Mandi) MSC: 39A50 39A24 39A30 92B20 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{L. Xu}, Kybernetika 55, No. 4, 690--713 (2019; Zbl 07177911) Full Text: DOI
Garić-Demirović, M.; Hrustić, S.; Moranjkić, S. Global dynamics of certain non-symmetric second order difference equation with quadratic term. (English) Zbl 1449.39006 Sarajevo J. Math. 15(28), No. 2, 155-167 (2019). MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{M. Garić-Demirović} et al., Sarajevo J. Math. 15(28), No. 2, 155--167 (2019; Zbl 1449.39006) Full Text: DOI
Kulenović, Mustafa R. S.; Nurkanović, Mehmed; Nurkanović, Zehra Global dynamics of certain mix monotone difference equation via center manifold theory and theory of monotone maps. (English) Zbl 1449.39007 Sarajevo J. Math. 15(28), No. 2, 129-154 (2019). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{M. R. S. Kulenović} et al., Sarajevo J. Math. 15(28), No. 2, 129--154 (2019; Zbl 1449.39007) Full Text: DOI
Folly-Gbetoula, M. Lie algebra and formulas for solutions for some systems of difference equations. (English) Zbl 1440.39004 Adv. Stud. Contemp. Math., Kyungshang 29, No. 4, 565-576 (2019). MSC: 39A23 39A05 PDF BibTeX XML Cite \textit{M. Folly-Gbetoula}, Adv. Stud. Contemp. Math., Kyungshang 29, No. 4, 565--576 (2019; Zbl 1440.39004) Full Text: DOI
De Assis, Raul Abreu; Malavazi, Mazílio Coronel A simple model of periodic reproduction: selection of prime periods. (English) Zbl 1430.92068 Smith, Frank T. (ed.) et al., Mathematics applied to engineering, modelling, and social issues. Cham: Springer. Stud. Syst. Decis. Control 200, 421-438 (2019). MSC: 92D25 39A23 PDF BibTeX XML Cite \textit{R. A. De Assis} and \textit{M. C. Malavazi}, Stud. Syst. Decis. Control 200, 421--438 (2019; Zbl 1430.92068) Full Text: DOI
Huang, Chaobao; Stynes, Martin Superconvergence of the direct discontinuous Galerkin method for a time-fractional initial-boundary value problem. (English) Zbl 1431.65216 Numer. Methods Partial Differ. Equations 35, No. 6, 2076-2090 (2019). MSC: 65N30 65M06 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{C. Huang} and \textit{M. Stynes}, Numer. Methods Partial Differ. Equations 35, No. 6, 2076--2090 (2019; Zbl 1431.65216) Full Text: DOI
Migda, Malgorzata; Dutkiewicz, Aldona Asymptotic behavior of solutions of second-order difference equations of Volterra type. (English) Zbl 1430.39001 Turk. J. Math. 43, No. 5, 2203-2217 (2019). MSC: 39A10 39A22 39A12 45D05 PDF BibTeX XML Cite \textit{M. Migda} and \textit{A. Dutkiewicz}, Turk. J. Math. 43, No. 5, 2203--2217 (2019; Zbl 1430.39001) Full Text: Link
Zhou, Hui Existence and uniqueness of almost periodic solutions to discrete mixed monotone hematopoiesis model. (English) Zbl 1431.39007 Math. Methods Appl. Sci. 42, No. 18, 7471-7481 (2019). MSC: 39A24 37N25 92B05 PDF BibTeX XML Cite \textit{H. Zhou}, Math. Methods Appl. Sci. 42, No. 18, 7471--7481 (2019; Zbl 1431.39007) Full Text: DOI
Stević, Stevo Two-dimensional solvable system of difference equations with periodic coefficients. (English) Zbl 1430.39004 Math. Methods Appl. Sci. 42, No. 18, 6757-6774 (2019). MSC: 39A20 39A10 39A45 PDF BibTeX XML Cite \textit{S. Stević}, Math. Methods Appl. Sci. 42, No. 18, 6757--6774 (2019; Zbl 1430.39004) Full Text: DOI
Eloe, Paul; Jonnalagadda, Jagan Mohan; Raffoul, Youssef The large contraction principle and existence of periodic solutions for infinite delay Volterra difference equations. (English) Zbl 1429.39008 Turk. J. Math. 43, No. 4, 1988-1999 (2019). MSC: 39A23 39A12 45J05 PDF BibTeX XML Cite \textit{P. Eloe} et al., Turk. J. Math. 43, No. 4, 1988--1999 (2019; Zbl 1429.39008) Full Text: Link
Bak, Sergiy; Kovtonyuk, Galyna Existence of standing waves in DNLS with saturable nonlinearity on 2D-lattice. (English) Zbl 1433.35353 Commun. Math. Anal. 22, No. 2, 18-34 (2019). MSC: 35Q55 35Q51 39A12 39A70 35A15 35B38 PDF BibTeX XML Cite \textit{S. Bak} and \textit{G. Kovtonyuk}, Commun. Math. Anal. 22, No. 2, 18--34 (2019; Zbl 1433.35353) Full Text: Euclid
Gao, Shang; Shen, Rong; Chen, Tianrui Periodic solutions for discrete-time Cohen-Grossberg neural networks with delays. (English) Zbl 1428.93069 Phys. Lett., A 383, No. 5, 414-420 (2019). MSC: 93C55 92B20 39A60 PDF BibTeX XML Cite \textit{S. Gao} et al., Phys. Lett., A 383, No. 5, 414--420 (2019; Zbl 1428.93069) Full Text: DOI
Tumakov, D. N.; Rung, E. V.; Danilova, A. V. Solving the problem of elastic waves diffraction by a fluid-saturated porous gradient layer using a second-order finite-difference scheme. (English) Zbl 1434.65140 Lobachevskii J. Math. 40, No. 10, 1739-1752 (2019). MSC: 65M06 76S05 65M12 65M15 42A38 34C25 65L10 74J05 PDF BibTeX XML Cite \textit{D. N. Tumakov} et al., Lobachevskii J. Math. 40, No. 10, 1739--1752 (2019; Zbl 1434.65140) Full Text: DOI
Hardin, A. J. M.; Rozikov, U. A. A quasi-strictly non-Volterra quadratic stochastic operator. (English) Zbl 1434.37033 Qual. Theory Dyn. Syst. 18, No. 3, 1013-1029 (2019). MSC: 37H10 37C25 PDF BibTeX XML Cite \textit{A. J. M. Hardin} and \textit{U. A. Rozikov}, Qual. Theory Dyn. Syst. 18, No. 3, 1013--1029 (2019; Zbl 1434.37033) Full Text: DOI arXiv
Graef, John R.; Kong, Lingju; Liu, Xueyan Multiple anti-periodic solutions to a discrete fourth order nonlinear equation. (English) Zbl 1428.39019 Differ. Equ. Dyn. Syst. 27, No. 4, 601-610 (2019). MSC: 39A23 39A10 39A27 58E05 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Differ. Equ. Dyn. Syst. 27, No. 4, 601--610 (2019; Zbl 1428.39019) Full Text: DOI
Pei, Lijun; Wang, Shuo Dynamics and the periodic solutions of the delayed non-smooth Internet TCP-RED congestion control system via HB-AFT. (English) Zbl 1428.49016 Appl. Math. Comput. 361, 689-702 (2019). MSC: 49J52 34A36 34K13 39A33 39A60 65T50 PDF BibTeX XML Cite \textit{L. Pei} and \textit{S. Wang}, Appl. Math. Comput. 361, 689--702 (2019; Zbl 1428.49016) Full Text: DOI
Brindle, Darin; N’Guérékata, Gaston M. S-asymptotically \(\omega\)-periodic sequential solutions to difference equations. (English) Zbl 1428.39018 Nonlinear Stud. 26, No. 3, 575-586 (2019). MSC: 39A23 39A24 PDF BibTeX XML Cite \textit{D. Brindle} and \textit{G. M. N'Guérékata}, Nonlinear Stud. 26, No. 3, 575--586 (2019; Zbl 1428.39018) Full Text: Link
Kocic, Vlajko L. Global behavior of some nonautonomous delay difference equations. (English) Zbl 1426.39017 Elaydi, Saber (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA 23, Timişoara, Romania, July 24–28, 2017. Proceedings of the 23rd international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 287, 309-331 (2019). MSC: 39A30 39A23 37N25 92D25 PDF BibTeX XML Cite \textit{V. L. Kocic}, Springer Proc. Math. Stat. 287, 309--331 (2019; Zbl 1426.39017) Full Text: DOI
Hamaya, Yoshihiro Existence and stability properties of almost periodic solutions in discrete almost periodic systems. (English) Zbl 1426.39013 Elaydi, Saber (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA 23, Timişoara, Romania, July 24–28, 2017. Proceedings of the 23rd international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 287, 273-283 (2019). MSC: 39A24 39A23 39A30 PDF BibTeX XML Cite \textit{Y. Hamaya}, Springer Proc. Math. Stat. 287, 273--283 (2019; Zbl 1426.39013) Full Text: DOI
Gardini, Laura; Sushko, Iryna Bifurcations in smooth and piecewise smooth noninvertible maps. (English) Zbl 1434.39010 Elaydi, Saber (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA 23, Timişoara, Romania, July 24–28, 2017. Proceedings of the 23rd international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 287, 83-128 (2019). Reviewer: A. P. Sadovskii (Minsk) MSC: 39A28 37C70 37G10 37C05 37G15 PDF BibTeX XML Cite \textit{L. Gardini} and \textit{I. Sushko}, Springer Proc. Math. Stat. 287, 83--128 (2019; Zbl 1434.39010) Full Text: DOI
Migda, Janusz; Migda, Małgorzata; Zbąszyniak, Zenon Asymptotically periodic solutions of second order difference equations. (English) Zbl 1428.39005 Appl. Math. Comput. 350, 181-189 (2019). MSC: 39A10 39A22 39A23 PDF BibTeX XML Cite \textit{J. Migda} et al., Appl. Math. Comput. 350, 181--189 (2019; Zbl 1428.39005) Full Text: DOI