×

Finite precision logistic map between computational efficiency and accuracy with encryption applications. (English) Zbl 1367.34047

Summary: Chaotic systems appear in many applications such as pseudo-random number generation, text encryption, and secure image transfer. Numerical solutions of these systems using digital software or hardware inevitably deviate from the expected analytical solutions. produced using finite precision systems do not exhibit the infinite period expected under the assumptions of infinite simulation time and precision. In this paper, digital implementation of the generalized logistic map with signed parameter is considered. We present a fixed-point hardware realization of a Pseudo-Random Number Generator using the logistic map that experiences a trade-off between computational efficiency and accuracy. Several introduced factors such as the used precision, the order of execution of the operations, parameter, and initial point values affect the properties of the finite precision map. For positive and negative parameter cases, the studied properties include bifurcation points, output range, maximum Lyapunov exponent, and period length. The performance of the finite precision logistic map is compared in the two cases. A basic stream cipher system is realized to evaluate the system performance for encryption applications for different bus sizes regarding the encryption key size, hardware requirements, maximum clock frequency, NIST and correlation, histogram, entropy, and Mean Absolute Error analyses of encrypted images.

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
11K45 Pseudo-random numbers; Monte Carlo methods
94A60 Cryptography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cuomo, K. M.; Oppenheim, A. V., Circuit implementation of synchronized chaos with applications to communications, Physical Review Letters, 71, 1, 65-68 (1993) · doi:10.1103/PhysRevLett.71.65
[2] Mandal, S.; Banerjee, S., Analysis and CMOS implementation of a chaos-based communication system, IEEE Transactions on Circuits and Systems I: Regular Papers, 51, 9, 1708-1722 (2004) · doi:10.1109/tcsi.2004.834482
[3] Radwan, A.; Soliman, A.; Elwakil, A. S., 1-D digitally-controlled multiscroll chaos generator, International Journal of Bifurcation and Chaos, 17, 1, 227-242 (2007) · Zbl 1117.37302 · doi:10.1142/S0218127407017288
[4] Zidan, M. A.; Radwan, A. G.; Salama, K. N., Controllable V-shape multiscroll butterfly attractor: system and circuit implementation, International Journal of Bifurcation and Chaos, 22, 6 (2012) · Zbl 1270.34112 · doi:10.1142/s021812741250143x
[5] Abd-El-Hafiz, S. K.; Radwan, A. G.; AbdEl-Haleem, S. H., Encryption applications of a generalized chaotic map, Applied Mathematics & Information Sciences, 9, 6, 3215-3233 (2015)
[6] Sayed, W. S.; Radwan, A. G.; Fahmy, H. A. H., Design of positive, negative, and alternating sign generalized logistic maps, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1418.39006 · doi:10.1155/2015/586783
[7] Alligood, K. T.; Sauer, T. D.; Yorke, J. A., Chaos—An Introduction to Dynamical Systems. Chaos—An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences (1997), New York, NY, USA: Springer-Verlag, New York, NY, USA · Zbl 0867.58043 · doi:10.1007/978-3-642-59281-2
[8] Schöll, E., Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, 10 (2001), Cambridge University Press · doi:10.1017/cbo9780511524615
[9] Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (2014), Westview Press
[10] Upadhyay, R. K.; Roy, P., Disease spread and its effect on population dynamics in heterogeneous environment, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 26, 1 (2016) · Zbl 1334.35355 · doi:10.1142/s0218127416500048
[11] Liu, L.; Miao, S., The complexity of binary sequences using logistic chaotic maps, Complexity, 21, 6, 121-129 (2016) · doi:10.1002/cplx.21672
[12] Phatak, S. C.; Rao, S. S., Logistic map: a possible random-number generator, Physical Review E, 51, 4, 3670-3678 (1995) · doi:10.1103/physreve.51.3670
[13] Kocarev, L.; Jakimoski, G., Logistic map as a block encryption algorithm, Physics Letters A, 289, 4-5, 199-206 (2001) · Zbl 0974.94005 · doi:10.1016/s0375-9601(01)00609-0
[14] Pareek, N. K.; Patidar, V.; Sud, K. K., Image encryption using chaotic logistic map, Image and Vision Computing, 24, 9, 926-934 (2006) · doi:10.1016/j.imavis.2006.02.021
[15] Kanso, A.; Smaoui, N., Logistic chaotic maps for binary numbers generations, Chaos, Solitons & Fractals, 40, 5, 2557-2568 (2009) · doi:10.1016/j.chaos.2007.10.049
[16] Patidar, V.; Sud, K. K.; Pareek, N. K., A pseudo random bit generator based on chaotic logistic map and its statistical testing, Informatica, 33, 4, 441-452 (2009) · Zbl 1189.68057
[17] Singh, N.; Sinha, A., Chaos-based secure communication system using logistic map, Optics and Lasers in Engineering, 48, 3, 398-404 (2010) · doi:10.1016/j.optlaseng.2009.10.001
[18] Liu, Y.; Fan, H.; Xie, E. Y.; Cheng, G.; Li, C., Deciphering an image cipher based on mixed transformed logistic maps, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 25, 13 (2015) · Zbl 1330.94042 · doi:10.1142/s0218127415501886
[19] Hsieh, D. A., Chaos and nonlinear dynamics: application to financial markets, The Journal of Finance, 46, 5, 1839-1877 (1991) · doi:10.1111/j.1540-6261.1991.tb04646.x
[20] Basalto, N.; Bellotti, R.; De Carlo, F.; Facchi, P.; Pascazio, S., Clustering stock market companies via chaotic map synchronization, Physica A: Statistical Mechanics and Its Applications, 345, 1-2, 196-206 (2005) · doi:10.1016/j.physa.2004.07.034
[21] Bowen, R.; Chazottes, J., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 470 (1975), Springer · Zbl 0308.28010
[22] Borcherds, P. H.; McCauley, G. P., The digital tent map and the trapezoidal map, Chaos, Solitons & Fractals, 3, 4, 451-466 (1993) · Zbl 0778.58018 · doi:10.1016/0960-0779(93)90030-5
[23] Addabbo, T.; Alioto, M.; Fort, A.; Rocchi, S.; Vignoli, V., The digital tent map: performance analysis and optimized design as a low-complexity source of pseudorandom bits, IEEE Transactions on Instrumentation and Measurement, 55, 5, 1451-1458 (2006) · doi:10.1109/tim.2006.880960
[24] Corless, R. M., What good are numerical simulations of chaotic dynamical systems?, Computers & Mathematics with Applications, 28, 10-12, 107-121 (1994) · Zbl 0813.65101 · doi:10.1016/0898-1221(94)00188-x
[25] Li, S.; Chen, G.; Mou, X., On the dynamical degradation of digital piecewise linear chaotic maps, International Journal of Bifurcation and Chaos, 15, 10, 3119-3151 (2005) · Zbl 1093.37514 · doi:10.1142/s0218127405014052
[26] Persohn, K. J.; Povinelli, R. J., Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation, Chaos, Solitons & Fractals, 45, 3, 238-245 (2012) · doi:10.1016/j.chaos.2011.12.006
[27] Mansingka, A. S.; Radwan, A. G.; Zidan, M. A.; Salama, K. N., Analysis of bus width and delay on a fully digital signum nonlinearity chaotic oscillator, Proceedings of the 54th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS ’11), IEEE · doi:10.1109/mwscas.2011.6026596
[28] Mansingka, A. S.; Affan Zidan, M.; Barakat, M. L.; Radwan, A. G.; Salama, K. N., Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77 Gbits/s, Microelectronics Journal, 44, 9, 744-752 (2013) · doi:10.1016/j.mejo.2013.06.007
[29] Öztürk, İ.; Kiliç, R., Cycle lengths and correlation properties of finite precision chaotic maps, International Journal of Bifurcation and Chaos, 24, 9 (2014) · Zbl 1301.37021 · doi:10.1142/s0218127414501077
[30] Wang, H.; Song, B.; Liu, Q.; Pan, J.; Ding, Q., FPGA design and applicable analysis of discrete chaotic maps, International Journal of Bifurcation and Chaos, 24, 4 (2014) · doi:10.1142/S0218127414500540
[31] Weisstein, E. W., Logistic map. From MathWorld-A Wolfram Web Resource, 2014, http://mathworld.wolfram.com/LogisticMap.html
[32] Perc, M., User friendly programs for nonlinear time series analysis, 2010, http://www.matjazperc.com/ejp/time.html
[33] https://en.wikiquote.org/wiki/Mahatma_Gandhi
[34] Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E., A statistical test suite for random and pseudorandom number generators for cryptographic applications (2001), DTIC Document
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.