×

Chaotic dynamics in premixed hydrogen/air channel flow combustion. (English) Zbl 1264.80025

Summary: The complex oscillatory behaviour observed in fuel-lean premixed hydrogen/air atmospheric pressure flames in an open planar channel with prescribed wall temperature is investigated by means of direct numerical simulations, employing detailed chemistry descriptions and species transport, and nonlinear dynamics analysis. As the inflow velocity is varied, the sequence of transitions includes harmonic single frequency oscillations, intermittency, mixed mode oscillations, and, finally, a period-doubling cascade leading to chaotic dynamics. The observed modes are described and characterised by means of phase-space portraits and next amplitude maps. It is shown that the interplay of chemistry, transport and a wall-bounded developing flow leads to considerably richer dynamics compared to fuel-lean hydrogen/air continuously stirred tank reactor studies.

MSC:

80A25 Combustion
76D05 Navier-Stokes equations for incompressible viscous fluids
80A32 Chemically reacting flows
82C40 Kinetic theory of gases in time-dependent statistical mechanics
37M10 Time series analysis of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
80M22 Spectral, collocation and related (meshless) methods applied to problems in thermodynamics and heat transfer
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S1540-7489(02)80113-4 · doi:10.1016/S1540-7489(02)80113-4
[2] DOI: 10.1016/j.proci.2006.07.121 · doi:10.1016/j.proci.2006.07.121
[3] DOI: 10.1016/S0010-2180(01)00358-3 · doi:10.1016/S0010-2180(01)00358-3
[4] DOI: 10.1016/j.proci.2004.08.245 · doi:10.1016/j.proci.2004.08.245
[5] DOI: 10.1016/j.proci.2006.07.032 · doi:10.1016/j.proci.2006.07.032
[6] DOI: 10.1016/j.combustflame.2008.08.006 · doi:10.1016/j.combustflame.2008.08.006
[7] DOI: 10.1016/j.combustflame.2007.07.013 · doi:10.1016/j.combustflame.2007.07.013
[8] DOI: 10.1016/j.proci.2008.05.055 · doi:10.1016/j.proci.2008.05.055
[9] DOI: 10.1016/0010-2180(88)90044-2 · doi:10.1016/0010-2180(88)90044-2
[10] DOI: 10.1039/ft9918700523 · doi:10.1039/ft9918700523
[11] DOI: 10.1039/ft9918702539 · doi:10.1039/ft9918702539
[12] DOI: 10.1039/a702808c · doi:10.1039/a702808c
[13] DOI: 10.1080/00102200290021344 · doi:10.1080/00102200290021344
[14] DOI: 10.1021/jp991148b · doi:10.1021/jp991148b
[15] DOI: 10.1063/1.870327 · Zbl 1149.76396 · doi:10.1063/1.870327
[16] DOI: 10.1016/S0009-2509(99)00326-7 · doi:10.1016/S0009-2509(99)00326-7
[17] DOI: 10.1016/0360-1285(85)90012-7 · doi:10.1016/0360-1285(85)90012-7
[18] DOI: 10.1146/annurev.fluid.38.050304.092153 · doi:10.1146/annurev.fluid.38.050304.092153
[19] DOI: 10.1016/j.pecs.2005.01.001 · doi:10.1016/j.pecs.2005.01.001
[20] DOI: 10.1016/j.proci.2010.06.082 · doi:10.1016/j.proci.2010.06.082
[21] DOI: 10.1017/S0022112058000148 · doi:10.1017/S0022112058000148
[22] DOI: 10.1007/978-1-4612-1116-7 · doi:10.1007/978-1-4612-1116-7
[23] Rehm R. G., J. Res. Nat. Bur. Stands 83 pp 297– (1978) · Zbl 0433.76072 · doi:10.6028/jres.083.019
[24] Hirschfelder J. O., Molecular Theory of Gases and Liquids (1954) · Zbl 0057.23402
[25] DOI: 10.1016/0010-2180(81)90027-4 · doi:10.1016/0010-2180(81)90027-4
[26] DOI: 10.1016/0021-9991(84)90128-1 · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[27] Mund E., High-Order Methods for Incompressible Fluid Flow (2002) · Zbl 1007.76001
[28] DOI: 10.1023/A:1025669715376 · Zbl 0905.76055 · doi:10.1023/A:1025669715376
[29] DOI: 10.1006/jcph.1998.6079 · Zbl 0913.76060 · doi:10.1006/jcph.1998.6079
[30] Kim T. J., Proc. Combust. Inst. 25 pp 759– (1994) · doi:10.1016/S0082-0784(06)80708-3
[31] Kee R. J., A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties (1986)
[32] Kee R. J., Chemkin II: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics (1989)
[33] Kee R. J., PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames (1985)
[34] Poinsot T., Theoretical and Numerical Combustion (2005)
[35] DOI: 10.1007/BF01053745 · Zbl 0943.37506 · doi:10.1007/BF01053745
[36] Kantz H., Nonlinear Time Series Analysis (2005) · Zbl 1050.62093
[37] DOI: 10.1103/PhysRevA.45.3403 · doi:10.1103/PhysRevA.45.3403
[38] Strogatz S. H., Nonlinear Dynamics and Chaos (2001)
[39] DOI: 10.1007/BF01197757 · doi:10.1007/BF01197757
[40] DOI: 10.1063/1.463727 · doi:10.1063/1.463727
[41] DOI: 10.1007/BF01020332 · Zbl 0509.58037 · doi:10.1007/BF01020332
[42] DOI: 10.1103/PhysRevLett.52.705 · doi:10.1103/PhysRevLett.52.705
[43] DOI: 10.1017/S0022112081003443 · Zbl 0513.76078 · doi:10.1017/S0022112081003443
[44] DOI: 10.1016/0167-2789(85)90011-9 · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[45] Gray P., Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics (1990)
[46] DOI: 10.1017/S0022112010001837 · Zbl 1205.76290 · doi:10.1017/S0022112010001837
[47] DOI: 10.1016/j.combustflame.2009.08.001 · doi:10.1016/j.combustflame.2009.08.001
[48] DOI: 10.1088/0951-7715/15/2/314 · Zbl 1005.37055 · doi:10.1088/0951-7715/15/2/314
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.