×

An electrostatic particle-in-cell code on multi-block structured meshes. (English) Zbl 1380.65312

Summary: We present an electrostatic particle-in-cell (PIC) code on multi-block, locally structured, curvilinear meshes called curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. Despite the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where an arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson’s equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma-material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. Compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.

MSC:

65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
82D10 Statistical mechanics of plasmas
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Harlow, Francis H.; Evans, M. W., A Machine Calculation Method for Hydrodynamic Problems (1955), LAMS-1956
[2] Evans, Martha W.; Harlow, Francis H.; Bromberg, Eleazer, The Particle-In-Cell Method for Hydrodynamic Calculations (1957), Technical report, DTIC Document
[3] Oscar, Buneman, Dissipation of currents in ionized media, Phys. Rev., 115, 3, 503 (1959) · Zbl 0088.45401
[4] Dawson, John, One-dimensional plasma model, Phys. Fluids, 5, 4, 445-459 (1962) · Zbl 0116.23001
[5] Birdsall, Charles K.; Langdon, A. Bruce, Plasma Physics via Computer Simulation (1985), McGraw-Hill
[6] Hockney, Roger W.; Eastwood, James W., Computer Simulation Using Particles (1988), CRC Press · Zbl 0662.76002
[7] Verboncoeur, John P., Particle simulation of plasmas: review and advances, Plasma Phys. Control. Fusion, 47, 5A, A231 (2005)
[8] Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; Shanker, Balasubramaniam, Conformal electromagnetic particle in cell: a review, IEEE Trans. Plasma Sci., 43, 11, 3778-3793 (2015)
[9] Filbet, Francis; Sonnendrücker, Eric; Bertrand, Pierre, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172, 1, 166-187 (2001) · Zbl 0998.65138
[10] Juno, J.; Hakim, A.; TenBarge, J.; Shi, E.; Dorland, W., Discontinuous Galerkin algorithms for fully kinetic plasmas (2017), arXiv preprint · Zbl 1380.65273
[11] Delzanno, G. L., Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form, J. Comput. Phys., 301, 338-356 (2015) · Zbl 1349.76568
[12] Vencels, J.; Delzanno, G. L.; Manzini, G.; Markidis, S.; Peng, I. Bo; Roytershteyn, V., Spectralplasmasolver: a spectral code for multiscale simulations of collisionless, magnetized plasmas, J. Phys. Conf. Ser., 719, 1, Article 012022 pp. (2016)
[13] Manzini, G.; Delzanno, G. L.; Vencels, J.; Markidis, S., A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system, J. Comput. Phys., 317, 82-107 (2016) · Zbl 1349.76572
[14] Vay, J.-L.; Colella, P.; Kwan, J. W.; McCorquodale, P.; Serafini, D. B.; Friedman, A.; Grote, D. P.; Westenskow, G.; Adam, J.-C.; Heron, A.; Haber, I., Application of adaptive mesh refinement to particle-in-cell simulations of plasmas and beams, Phys. Plasmas, 11, 5, 2928-2934 (2004)
[15] Mandell, Myron J.; Davis, Victoria A.; Cooke, David L.; Wheelock, Adrian T.; Roth, Christopher J., Nascap-2k spacecraft charging code overview, IEEE Trans. Plasma Sci., 34, 5, 2084-2093 (2006)
[16] Fujimoto, Keizo; Machida, Shinobu, Electromagnetic full particle code with adaptive mesh refinement technique: application to the current sheet evolution, J. Comput. Phys., 214, 2, 550-566 (2006) · Zbl 1103.78006
[17] Innocenti, M. E.; Lapenta, G.; Markidis, S.; Beck, A.; Vapirev, A., A multi level multi domain method for particle in cell plasma simulations, J. Comput. Phys., 238, 115-140 (2013)
[18] Westermann, T., Particle-in-cell simulations with moving boundaries-adaptive mesh generation, J. Comput. Phys., 114, 2, 161-175 (1994) · Zbl 0811.65123
[19] Eastwood, J. W.; Arter, W.; Brealey, N. J.; Hockney, R. W., Body-fitted electromagnetic PIC software for use on parallel computers, Comput. Phys. Commun., 87, 1-2, 155-178 (1995) · Zbl 0923.76193
[20] Munz, C.-D.; Schneider, R.; Sonnendrucker, E.; Stein, E.; Voss, U.; Westermann, T., A finite-volume particle-in-cell method for the numerical treatment of Maxwell-Lorentz equations on boundary-fitted meshes, Int. J. Numer. Methods Eng., 44, 4, 461-487 (1999) · Zbl 0941.78015
[21] Roussel, J. F.; Rogier, F.; Dufour, G.; Mateo-Velez, J. C.; Forest, J.; Hilgers, A.; Rodgers, D.; Girard, L.; Payan, D., SPIS open-source code: methods, capabilities, achievements, and prospects, IEEE Trans. Plasma Sci., 36, 5, 2360-2368 (2008)
[22] Fichtl, C. A.; Finn, J. M.; Cartwright, K. L., An arbitrary curvilinear-coordinate method for particle-in-cell modeling, Comput. Sci. Discov., 5, 1, Article 014011 pp. (2012)
[23] Marchand, R., Ptetra, a tool to simulate low earth orbit satellite-plasma interaction, IEEE Trans. Plasma Sci., 40, 2, 217-229 (2012)
[24] Chacon, L.; Chen, G.; Barnes, D. C., A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes, J. Comput. Phys., 233, 1-9 (2013) · Zbl 1286.78005
[25] Delzanno, Gian Luca; Camporeale, Enrico; Moulton, J. David; Borovsky, Joseph E.; MacDonald, Elizabeth A.; Thomsen, Michelle F., CPIC: a curvilinear particle-in-cell code for plasma-material interaction studies, IEEE Trans. Plasma Sci., 41, 12, 3577-3587 (2013)
[26] Hutchinson, I. H., Nonlinear collisionless plasma wakes of small particles, Phys. Plasmas, 18, 3 (2011)
[27] Lapenta, Giovanni, Democritus: an adaptive particle in cell (PIC) code for object-plasma interactions, J. Comput. Phys., 230, 12, 4679-4695 (2011) · Zbl 1416.76245
[28] Miloch, W. J., Simulations of several finite-sized objects in plasma, Proc. Comput. Sci., 51, 1282-1291 (2015)
[29] Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph, A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions, J. Comput. Phys., 321, 965-980 (2016) · Zbl 1349.76212
[30] Petillo, John; Eppley, Kenneth; Panagos, Dimitrios; Blanchard, Paul; Nelson, Eric; Dionne, Norman; DeFord, John; Held, Ben; Chernyakova, Liya; Krueger, Warren, The MICHELLE three-dimensional electron gun and collector modeling tool: theory and design, IEEE Trans. Plasma Sci., 30, 3, 1238-1264 (2002)
[31] Petillo, John J.; Nelson, Eric M.; DeFord, John F.; Dionne, Norman J.; Levush, Baruch, Recent developments to the MICHELLE 2-D/3-D electron gun and collector modeling code, IEEE Trans. Electron Devices, 52, 5, 742-748 (2005)
[32] MacLachlan, S. P.; Tang, J. M.; Vuik, C., Fast and robust solvers for pressure-correction in bubbly flow problems, J. Comput. Phys., 227, 23, 9742-9761 (Dec. 2008) · Zbl 1317.76062
[33] Gatsonis, Nikolaos A.; Chamberlin, Ryan E.; Averkin, Sergey N., An unstructured direct simulation Monte Carlo methodology with kinetic-moment inflow and outflow boundary conditions, J. Comput. Phys., 233, 148-174 (2013) · Zbl 1286.65004
[34] Eastwood, James W.; Arter, Wayne; Hockney, Roger W., General Geometry PIC for MIMD Computers (1993), Technical report, DTIC Document
[35] Brackbill, J. U., FLIP MHD: a particle-in-cell method for magnetohydrodynamics, J. Comput. Phys., 96, 1, 163-192 (1991) · Zbl 0726.76078
[36] Lapenta, G.; Delzanno, G. L.; Finn, J. M., Nonlinear PIC simulation in a penning trap, AIP Conf. Proc., 606, 1, 486-495 (2002)
[37] Delzanno, G. L.; Lapenta, G.; Finn, J. M., KANDINSKY: a PIC code for fluid simulations of penning traps, IEEE Trans. Plasma Sci., 30, 1, 34-35 (2002)
[38] Lapenta, Giovanni, Particle simulations of space weather, J. Comput. Phys., 231, 3, 795-821 (2012), Special Issue: Computational Plasma Physics · Zbl 1238.86008
[39] Delzanno, G. L.; Borovsky, J. E.; Thomsen, M. F.; Moulton, J. D.; MacDonald, E. A., Future beam experiments in the magnetosphere with plasma contactors: how do we get the charge off the spacecraft?, J. Geophys. Res. Space Phys., 120, 5, 3647-3664 (2015), 2014JA020608
[40] Delzanno, G. L.; Borovsky, J. E.; Thomsen, M. F.; Moulton, J. D., Future beam experiments in the magnetosphere with plasma contactors: the electron collection and ion emission routes, J. Geophys. Res. Space Phys., 120, 5, 3588-3602 (2015), 2014JA020683
[41] Delzanno, Gian Luca; Tang, Xian-Zhu, Charging and heat collection by a positively charged dust grain in a plasma, Phys. Rev. Lett., 113, Article 035002 pp. (Jul. 2014)
[42] Liseikin, Vladimir D., Grid Generation Methods (1999), Springer-Verlag · Zbl 1196.65158
[43] Brezzi, Franco; Lipnikov, Konstantin; Shashkov, Mikhail, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) · Zbl 1108.65102
[44] Brezzi, Franco; Lipnikov, Konstantin; Simoncini, Valeria, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 15, 10, 1533-1551 (2005) · Zbl 1083.65099
[45] Brezzi, Franco; Lipnikov, Konstantin; Shashkov, Mikhail, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces, Math. Models Methods Appl. Sci., 16, 02, 275-297 (2006) · Zbl 1094.65111
[46] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., The Mimetic Finite Difference Method for Elliptic Problems (2014), Springer · Zbl 1286.65141
[47] Lipnikov, K.; Manzini, G.; Shashkov, M., Mimetic finite difference method, J. Comput. Phys., 257, Part B, 1163-1227 (2014), Physics-compatible numerical methods · Zbl 1352.65420
[48] Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Eng., 196, 37-40, 3682-3692 (2007) · Zbl 1173.76370
[49] Gyrya, V.; Lipnikov, K.; Manzini, G.; Svyatskiy, D., M-adaptation in the mimetic finite difference method, Math. Models Methods Appl. Sci., 24, 8, 1621-1663 (2014) · Zbl 1291.65320
[50] Lipnikov, K.; Manzini, G.; Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, J. Comput. Phys., 230, 7, 2620-2642 (2011) · Zbl 1218.65117
[51] Wang, J.; Kondrashov, D.; Liewer, P. C.; Karmesin, S. R., Three-dimensional deformable-grid electromagnetic particle-in-cell for parallel computers, J. Plasma Phys., 61, 03, 367-389 (1999)
[52] Westermann, T., Localization schemes in 2D boundary-fitted grids, J. Comput. Phys., 101, 2, 307-313 (1992) · Zbl 0778.76079
[53] Boris, J. P., Relativistic plasma simulation-optimization of a hybrid code, (Proc. Fourth Conf. Num. Sim. Plasmas (1970), Naval Res. Lab.: Naval Res. Lab. Wash. DC), 3-67
[54] Burgess, D.; Sulsky, D.; Brackbill, J. U., Mass matrix formulation of the flip particle-in-cell method, J. Comput. Phys., 103, 1, 1-15 (1992) · Zbl 0761.73117
[55] Cartwright, K. L.; Verboncoeur, J. P.; Birdsall, C. K., Loading and injection of Maxwellian distributions in particle simulations, J. Comput. Phys., 162, 2, 483-513 (2000) · Zbl 0968.82025
[56] Mmesh3d
[57] Cfd/mesh generation — advanced design optimization
[58] Autogrid5 — numeca
[59] Cadgen — fluidyn
[60] Gridpro — product development company
[61] Icem cfd — ansys
[62] Hex grids — pointwise
[63] Truegrid — xyz scientific applications
[64] Falgout, R. D.; Jones, J. E.; Yang, U. M., Numerical solution of partial differential equations on parallel computers, (Lect. Notes Comput. Sci. Eng., vol. 51 (2006), Springer-Verlag), 267-294, Chapter: The design and implementation of hypre, a library of parallel high performance preconditioners · Zbl 1084.65001
[65] Dendy, J. E., Black box multigrid, J. Comput. Phys., 48, 3, 366-386 (1982) · Zbl 0495.65047
[66] Dendy, J. E., Black box multigrid for periodic and singular problems, Appl. Math. Comput., 25, 1, 1-10 (Jan. 1988) · Zbl 0636.65110
[67] Dendy, J. E.; Moulton, J. D., Black box multigrid with coarsening by a factor of three, Numer. Linear Algebra Appl., 17, 2-3, 577-598 (2010) · Zbl 1242.65265
[68] Colella, Phillip; Norgaard, Peter C., Controlling self-force errors at refinement boundaries for AMR-PIC, J. Comput. Phys., 229, 4, 947-957 (2010) · Zbl 1185.82054
[69] Bittencourt, J. A., Fundamentals of Plasma Physics (2004), Springer · Zbl 1084.76001
[70] Chen, Guangye; Chacón, Luis; Barnes, Daniel C., An energy-and charge-conserving, implicit, electrostatic particle-in-cell algorithm, J. Comput. Phys., 230, 18, 7018-7036 (2011) · Zbl 1237.78006
[71] Markidis, Stefano; Lapenta, Giovanni, The energy conserving particle-in-cell method, J. Comput. Phys., 230, 18, 7037-7052 (2011) · Zbl 1231.82067
[72] Wolf, Eric M.; Causley, Matthew; Christlieb, Andrew; Bettencourt, Matthew, A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver, J. Comput. Phys., 326, 342-372 (2016) · Zbl 1373.76275
[73] Hutchinson, I. H., Principles of Plasma Diagnostics (2005), Cambridge University Press: Cambridge University Press Cambridge
[74] Shukla, P. K.; Mamun, A. A., Introduction to Dusty Plasma Physics (2001), Institute of Physics Publishing: Institute of Physics Publishing Philadelphia · Zbl 1112.76512
[75] Tang, Xian Zhu; Delzanno, Gian Luca, Orbital-motion-limited theory of dust charging and plasma response, Phys. Plasmas, 21, 12 (2014)
[76] Willis, C. T.N.; Coppins, M.; Bacharis, M.; Allen, J. E., The effect of dust grain size on the floating potential of dust in a collisionless plasma, Plasma Sources Sci. Technol., 19, 6, Article 065022 pp. (2010)
[77] Delzanno, Gian Luca; Tang, Xian-Zhu, Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations, Phys. Plasmas, 22, 11 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.