×

Numerical investigation of microfluidic sorting of microtissues. (English) Zbl 1357.92043

Summary: We characterize through simulation a microfluidic-based particle sorting approach instrumental in flow cytometry for quantifying microtissue features. The microtissues are represented herein as rigid spheres. The numerical solution employed draws on a Lagrangian-Lagrangian (LL), smoothed particle hydrodynamics (SPH) approach for the simulation of the coupled fluid-rigid-body dynamics. The study sets out to first quantify the influence of the discretization resolution, numerical integration step size, and SPH marker spacing on the accuracy of the numerical solution. By considering the particle motion through the microfluidic device, we report particle surface stresses in the range of \(\sigma=[0.1, 1.0]\) Pa; i.e., significantly lower than the critical value of 100 Pa that would affect cell viability. Lift-off of non-neutrally buoyant particles in a rectangular channel flow at the target flow regime is investigated to gauge whether the particle shear stress is magnified as a result of dragging on the wall. Several channel designs are considered to assess the effect of channel shape on the performance of the particle sorting device. Moreover, it is shown that a deviation in flow rate does not influence the focusing of the particles at the channel outlet.

MSC:

92C55 Biomedical imaging and signal processing
78A45 Diffraction, scattering

Software:

CUDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Buschke, D. G.; Squirrell, J. M.; Ansari, H.; Smith, M. A.; Rueden, C. T.; Williams, J. C.; Lyons, G. E.; Kamp, T. J.; Eliceiri, K. W.; Ogle, B. M., Multiphoton flow cytometry to assess intrinsic and extrinsic Fluorescence in cellular aggregates: applications to stem cells, Microsc. Microanal., 17, 04, 540-554 (2011)
[3] Buschke, D.; Resto, P.; Schumacher, N.; Cox, B.; Tallavajhula, A.; Vivekanandan, A.; Eliceiri, K.; Williams, J.; Ogle, B., Microfluidic sorting of microtissues, Biomicrofluidics, 6, 1, 014 116 (2012)
[4] Haug, E. J., Computer-Aided Kinematics and Dynamics of Mechanical Systems Volume-I (1989), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey
[5] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics—theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 1, 375-389 (1977) · Zbl 0421.76032
[6] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[7] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 1, 1703-1759 (2005)
[8] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): An overview and recent developments, Arch. Comput. Methods Eng., 17, 1, 25-76 (2010) · Zbl 1348.76117
[9] Monaghan, J. J., An introduction to SPH, Comput. Phys. Commun., 48, 1, 89-96 (1988) · Zbl 0673.76089
[10] Monaghan, J. J.; Lattanzio, J. C., A refined particle method for astrophysical problems, Astronom. Astrophys., 149, 135-143 (1985) · Zbl 0622.76054
[11] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 1, 214-226 (1997) · Zbl 0889.76066
[12] Monaghan, J. J., On the problem of penetration in particle methods, J. Comput. Phys., 82, 1, 1-15 (1989) · Zbl 0665.76124
[13] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys., 191, 2, 448-475 (2003) · Zbl 1028.76039
[14] Monaghan, J. J., SPH without a tensile instability, J. Comput. Phys., 159, 2, 290-311 (2000) · Zbl 0980.76065
[15] Adami, S.; Hu, X.; Adams, N., A transport-velocity formulation for smoothed particle hydrodynamics, J. Comput. Phys., 241, 292-307 (2013) · Zbl 1349.76659
[16] Pazouki, A.; Negrut, D., A numerical study of the effect of particle properties on the radial distribution of suspensions in pipe flow, Comput. & Fluids, 108, 1-12 (2015) · Zbl 1390.76895
[17] Hu, W.; Tian, Q.; Hu, H., Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method, Nonlinear Dynam., 1-19 (2013)
[18] Basa, M.; Quinlan, N.; Lastiwka, M., Robustness and accuracy of SPH formulations for viscous flow, Internat. J. Numer. Methods Fluids, 60, 10, 1127-1148 (2009) · Zbl 1419.76518
[19] Adami, S.; Hu, X.; Adams, N., A generalized wall boundary condition for smoothed particle hydrodynamics, J. Comput. Phys., 231, 21, 7057-7075 (2012)
[20] Lee, E.; Moulinec, C.; Xu, R.; Violeau, D.; Laurence, D.; Stansby, P., Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, J. Comput. Phys., 227, 18, 8417-8436 (2008) · Zbl 1256.76054
[21] Pazouki, A.; Song, B.; Negrut, D., Boundary condition enforcing methods for Smoothed Particle Hydrodynamics. Technical Report: TR-2015-09 (2015)
[22] Davis, R. H., Elastohydrodynamic collisions of particles, Physicochem. Hydrodyn.: PCH, 9, 41-52 (1987)
[23] Cundall, P., A computer model for simulating progressive, large-scale movements in blocky rock systems, (Proceedings of International Symposium on Rock Fracture (1971))
[24] Ladd, A. J., Numerical simulations of particulate suspensions via a discretized Boltzmann equation, J. Fluid Mech., 271, 1, 285-339 (1994) · Zbl 0815.76085
[25] Leonardi, A.; Wittel, F. K.; Mendoza, M.; Herrmann, H. J., Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions, Comput. Particle Mech., 1, 1, 3-13 (2014)
[26] Atkinson, K., An Introduction to Numerical Analysis (1989), John Wiley and Sons: John Wiley and Sons USA · Zbl 0718.65001
[28] Pazouki, A., A Lagrangian-Lagrangian Framework for the Simulation of Fluid-Solid Interaction Problems with Rigid and Flexible Components (2014), Department of Mechanical Engineering, University of Wisconsin-Madison, (Ph.D. thesis)
[29] Randles, P.; Libersky, L., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Methods Appl. Mech. Engrg., 139, 1, 375-408 (1996) · Zbl 0896.73075
[30] Patankar, N.; Huang, P.; Ko, T.; Joseph, D., Lift-off of a single particle in Newtonian and viscoelastic fluids by direct numerical simulation, J. Fluid Mech., 438, 67-100 (2001) · Zbl 1034.76002
[31] Segre, G.; Silberberg, A., Radial particle displacements in Poiseuille flow of suspensions, Nature, 189, 209-210 (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.