zbMATH — the first resource for mathematics

Neural field theory of calcium dependent plasticity with applications to transcranial magnetic stimulation. (English) Zbl 1314.92036
Summary: Calcium dependent plasticity (CaDP), a physiologically realistic plasticity mechanism in the microscopic regime, is incorporated into a neural field theory to explore system-level plasticity. This system-level plasticity model is capable of reproducing the characteristic plasticity window of spike-timing dependent plasticity (STDP) in paired associative stimulation (PAS), where a peripheral electric pulse stimulation is paired to transcranial magnetic stimulation (TMS) in the cortex, and rTMS frequency dependent plasticity, where low and high frequency rTMS trains induce depression and potentiation, respectively. These thus reproduce experimental results for system-level plasticity for the first time. This also bridges the gap between microscopic plasticity theory and system-level plasticity observed experimentally, and addresses long standing problems of stability and adaptability by predicting stable plasticity, a possible seizure state where neurons fire at a high rate, and spike-rate adaptation.

92C20 Neural biology
Full Text: DOI
[1] Abarbanel, H. D.I.; Gibb, L.; Huerta, R.; Rabinovich, M. I., Biophysical model of synaptic plasticity dynamics, Biol. Cybern., 89, 214-226, (2003) · Zbl 1094.92010
[2] Abbott, L. F.; Nelson, S. B., Synaptic plasticitytaming the beast, Nat. Neurosci., 3, 1178-1183, (2000)
[3] Basser, P. J.; Roth, B. J., Stimulation of a myelinated nerve axon by electromagnetic induction, Med. Biol. Eng. Comput., 29, 261-268, (1991)
[4] Beurle, R. L., Properties of a mass of cells capable of regenerating pulses, Philos. Trans. R. Soc. London, Ser. B, 240, 55-94, (1956)
[5] Bi, G.-Q.; Rubin, J., Timing in synaptic plasticityfrom detection to integration, Trends Neurosci., 28, 5, 222-228, (2005)
[6] Bienenstock, E. L.; Cooper, L. N.; Munro, P. W., Theory for the development of neuron selectivityorientation specificity and binocular interaction in visual cortex, J. Neurosci., 2, 32-48, (1982)
[7] Bojak, I.; Liley, D. T.J., Axonal velocity distributions in neural field equations, PLoS Biol, 6, e1000653, (2010)
[8] Cai, Y.; Gavornik, J. P.; Cooper, L. N.; Yeung, L. C.; Shouval, H. Z., Effect of stochastic synaptic and dendritic dynamics on synaptic plasticity in visual cortex and hippocampus, J. Neurophysiol., 97, 375-386, (2007)
[9] Castellani, G. C.; Quinlan, E. M.; Cooper, L. N.; Shouval, H. Z., A biophysical model of bidirectional synaptic platicitydependence on AMPA and NMDA receptors, Proc. Natl. Acad. Sci. USA, 98, 22, 12772-12777, (2001)
[10] Chen, N.; Ren, J.; Raymond, L. A.; Murphy, T. H., Changes in agonist concentration dependence that are a function of duration of exposure suggest n-methyl-d-aspartate receptor nonsaturation during synaptic stimulation, Mol. Pharmacol., 59, 2, 210-212, (2000)
[11] Coombes, S., Waves, bumps, and patterns in neural field theories, Biol. Cybern., 93, 91, (2005) · Zbl 1116.92012
[12] Deco, G.; Jirsa, V. K.; Robinson, P. A.; Breakspear, M.; Friston, K., The dynamic brainfrom spiking neurons to neural masses and cortical fields, PLoS Comput. Biol., 4, e1000092, (2008)
[13] Freeman, W. J., Mass action in the nervous system, (1975), Academic New York
[14] Fung, P.K., Haber, A.L., Robinson, P.A., 2013. Neural field theory of large-scale synaptic plasticity in the cerebral cortex. J. Theor. Biol., 318, 44-57. · Zbl 1406.92080
[15] Gerstner, W.; Kistler, W. M., Mathematical formulations of Hebbian learning, Biol. Cybern., 87, 404-415, (2002) · Zbl 1105.92313
[16] Graupner, M.; Brunel, N., Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models, Front. Comput. Neurosci., 4, 1-19, (2010)
[17] Hallett, M., Transcranial magnetic stimulationa primer, Neuron, 55, 187-199, (2007)
[18] Hebb, D. O., The organization of behaviora neuropsychological theory, (1949), Wiley New York
[19] Holmes, M. H.; Bell, J., Auditory transductiona model for the role of intracellular calcium in short-term adaptation, Math. Comput. Model., 15, 11, 35-55, (1991) · Zbl 0754.92006
[20] Kandel, E. R.; Schwartz, J. H.; Jessell, T. M., Principles of neural science, (2000), McGraw-Hill New York
[21] Kempter, R.; Gerstner, W.; van Hemmen, J. L., Hebbian learning and spiking neurons, Phys. Rev. E, 59, 4498-4514, (1999)
[22] Loxley, P. N.; Robinson, P. A., Spike-rate adaptation and neuronal bursting in a mean-field model of brain activity, Biol. Cybern., 97, 113-122, (2007) · Zbl 1122.92012
[23] Maier, D. L.; Grieb, G. M.; Stelzner, D. J.; McCasland, J. S., Large-scale plasticity in barrel cortex following repeated whisker trimming in Young adult hamsters, Exp. Neurol., 184, 737-745, (2003)
[24] Malenka, R. C.; Bear, M. F., LTP and ltdan embarrassment of riches, Neuron, 44, 5-21, (2004)
[25] Markram, H.; Gerstner, W.; Sjostrom, P. J., A history of spike-timing-dependent plasticity, Front. Comput. Neurosci., 3, (2011)
[26] Miles, G. B.; Dai, Y.; Brownstone, R. M., Mechanisms underlying the early phase of spike frequency adaptation in mouse spinal motoneurones, J. Physiol., 556, 2, 519-532, (2005)
[27] Modugno, N.; Nakamura, Y.; MacKinnon, C. D.; Filipovic, S. R.; Bestmann, S.; Berardelli, A.; Rothwell, J. C., Motor cortex excitability following short trains of repetitive magnetic stimuli, Exp. Brain Res., 140, 4, 453-459, (2001)
[28] Montague, P. R., The resource consumption principleattention and memory in volumes of neural tissue, Proc. Natl. Acad. Sci. USA, 93, 3619-3623, (1996)
[29] Morrison, A.; Diesmann, M.; Gerstner, W., Phenomenological models of synaptic plasticity based on spike timing, Biol. Cybern., 98, 459-478, (2008) · Zbl 1145.92306
[30] Muller-Dahlhaus, F.; Ziemann, U.; Classen, J., Plasticity resembling spike-timing dependent synaptic plasticitythe evidence in human cortex, Front. Syn. Neurosci., 2, (2010)
[31] Nunez, P. L., Neocortical dynamics and human EEG rhythms, (1995), Oxford USA
[32] Okubo, Y.; Iino, M., Visualization of glutamate as a volume transmitter, J. Physiol., 589, 481-488, (2011)
[33] Pankratov, Y. V.; Krishtal, O. A., Distinct quantal features of AMPA and NMDA synaptic currents in hippocampal neuronsimplication of glutamate spillover and receptor saturation, Biophys. J., 85, 3375-3387, (2003)
[34] Partridge, L. D., Calcium independence of slow currents underlying spike frequency adaptation, J. Neurobiol., 11, 6, 613-622, (1980)
[35] Powers, R. K.; Sawczuk, A.; Musick, J. R.; Binder, M. D., Multiple mechanisms of spike-frequency adaptation in motoneurones, J. Physiol., 93, 101-114, (1999)
[36] Ridding, M. C.; Rothwell, J. C., Is there a future for therapeutic use of transcranial magnetic stimulation?, Nat. Rev. Neurosci., 8, 7, 559-567, (2007)
[37] Robinson, P. A., Propagator theory of brain dynamics, Phys. Rev. E, 72, 011904, (2005)
[38] Robinson, P. A., Neural field theory of synaptic plasticity, J. Theor. Biol., 285, 156-163, (2011) · Zbl 1397.92121
[39] Robinson, P. A.; Loxley, P. N.; O’Connor, S. C.; Rennie, C. J., Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials, Phys. Rev. E, 63, 041909, (2001)
[40] Robinson, P. A.; Rennie, C. J.; Rowe, D. L., Dynamics of large-scale brain activity in normal arousal states and epileptic seizures, Phys. Rev. E, 65, 041924, (2002)
[41] Robinson, P. A.; Rennie, C. J.; Rowe, D. L.; O’Connor, S. C., Estimation of multiscale neurophysiologic parameters by electroencephalographic means, Hum. Brain. Mapp., 23, 53-72, (2004)
[42] Robinson, P. A.; Rennie, C. J.; Rowe, D. L.; O’Connor, S. C.; Gordon, E., Multiscale brain modelling, Philos. Trans. R. Soc. London, Ser. B, 360, 1043-1050, (2005)
[43] Robinson, P. A.; Rennie, C. J.; Wright, J., Propagation and stability of waves of electrical activity in the cortex, Phys. Rev. E, 56, 826-840, (1997)
[44] Rubino, D.; Robbins, K. A.; Hatsopoulos, N. G., Propagating waves mediate information transfer in the motor cortex, Nat. Neurosci., 9, 1549-1557, (2006)
[45] Sabatini, B. L.; Oertner, T. G.; Svoboda, K., The life cycle of \(\operatorname{Ca}^{2 +}\) ions in dendritic spines, Neuron, 33, 439-452, (2002)
[46] Salinas, F. S.; Lancaster, J. L.; Fox, P. T., Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils, Phys. Med. Biol., 52, 2879-2892, (2007)
[47] Schiff, S. J.; Huang, X.; Wu, J. Y., Dynamical evolution of spatiotemporal patterns in Mammalian middle cortex, Phys. Rev. Lett., 98, 178102, (2007)
[48] Sejnowski, T. J., The book of hebb, Neuron, 24, 773-776, (1999)
[49] Shah, N. T.; Yeung, L. C.; Cooper, L. N.; Cai, Y.; Shouval, H. Z., A biophysical basis for the inter-spike interaction of spike-timing-dependent plasticity, Biol. Cybern., 95, 113-121, (2006) · Zbl 1172.92338
[50] Shouval, H. Z.; Bear, M. F.; Cooper, L. N., A unified model of NMDA receptor-dependent bidirectional synaptic plasticity, Proc. Natl. Acad. Sci. USA, 99, 10831-10836, (2002)
[51] Shouval, H. Z.; Castellani, G. C.; Blais, B. S.; Yeung, L. C.; Cooper, L. N., Converging evidence for a simplified biophysical model of synaptic plasticity, Biol. Cybern., 87, 383-391, (2002) · Zbl 1105.92302
[52] Shouval, H. Z.; Kalantzis, G., Stochastic properties of synaptic transmission affect the shape of spike time-dependent plasticity curves, J. Neurophysiol., 93, 1067-1073, (2005)
[53] Shouval, H. Z.; Wang, S. S.-H.; Wittenberg, G. M., Spike timing dependent plasticitya consequence of more fundamental learning rules, Front. Comput. Neurosci., 4, (2010)
[54] Sugita, Y., Global plasticity in adult visual cortex following reversal of visual input, Nature, 380, 523-526, (1996)
[55] Thickbroom, G. W., Transcranial magnetic stimulation and synaptic platicityexperimental framework and human models, Exp. Brain Res., 180, 583-593, (2007)
[56] van Ooyen, A., Competition in the development of nerve connectionsa review of models, NetworksComput. Neural Syst., 12, 1-47, (2001)
[57] Wang, X.-J., Calcium coding and adaptive temporal computation in cortical pyramidal neurons, J. Neurophysiol., 79, 1549-1566, (1998)
[58] Wolters, A.; Sandbrink, F.; Schlottmann, A.; Kunesch, E.; Stefan, K.; Cohen, L. G.; Benecke, R.; Classen, J., A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex, J. Neurophysiol., 89, 2339-2345, (2003)
[59] Wolters, A.; Schmidt, A.; Schramm, A.; Zeller, D.; Naumann, M.; Kunesch, E.; Benecke, R.; Reiners, K.; Classen, J., Timing-dependent plasticity in human primary somatosensory cortex, J. Physiol., 565, 3, 1039-1052, (2005)
[60] Xu, W.; Huang, X.; Takagaki, K.; Wu, J. Y., Compression and reflection of visually evoked cortical waves, Neuron, 55, 119-129, (2007)
[61] Yeung, L. C.; Blais, B. S.; Cooper, L. N.; Shouval, H. Z., Calcium as the associative signal for a model of Hebbian plasticityapplication to multi-input environments, Neurocomputing, 52-54, 437-440, (2003)
[62] Ziemann, U.; Paulus, W.; Nitsche, M. A.; Pascual-Leone, A.; Byblow, W.; Berardelli, A.; Siebner, H.; Classen, J.; Cohen, L. G.; Rothwell, J. C., Consensusmotor cortex plasticity protocols, Brain Stimul., 1, 164-182, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.