×

Crack growth adaptive XIGA simulation in isotropic and orthotropic materials. (English) Zbl 1442.74203

Summary: Reliable prediction and thorough understanding of crack growth in engineering materials and structures are of challenging problems, but scientific and technical community has been continuously pursuing an efficient numerical approach to crack propagation simulation. We present in this paper a significant extension and development of the adaptive extended isogeometric analysis (XIGA) based on LR B-splines (locally refined B-splines), which facilitates the local refinement, for accurately modeling crack growth in isotropic and orthotropic media. The discontinuity and singularity of displacements and stresses induced by cracks are locally captured by special enrichment functions, for both isotropic and orthotropic media. This allows the representation of crack to be independent of the computational mesh and avoids the requirement for re-meshing in crack growth simulation. The numerical integration accuracy is improved with the use of the almost-polar integration and sub-triangle technique for the crack-tip and cut elements, respectively. The posteriori error estimator based on Zienkiewicz-Zhu error estimation is employed to define refinement domains, and thereby, drives the adaptivity. On the other hand, the maximum circumferential stress criterion is adopted to determine the direction of crack growth. Several crack growth numerical examples for both isotropic and orthotropic media are studied in different scenarios to show the performance and accuracy of the developed approach. Numerical results reveal that the present approach integrated with the adaptive local refinement scheme offers higher accuracy and convergence rate than the standard XIGA. Furthermore, the adaptive XIGA in a tandem with Nitche’s method is applied to simulate the crack growth of complicated structures. We additionally explore the effects of some numerical aspects or factors on crack path. Smaller crack growth increment could be used to improve the accuracy of crack path within a finer mesh in the adaptive XIGA.

MSC:

74R10 Brittle fracture
65D07 Numerical computation using splines
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 1, 131-150 (1999) · Zbl 0955.74066
[2] Richardson, C. L.; Hegemann, J.; Sifakis, E.; Hellrung, J.; Teran, J. M., An XFEM method for modeling geometrically elaborate crack propagation in brittle materials, Internat. J. Numer. Methods Engrg., 88, 1042-1065 (2011) · Zbl 1242.74156
[3] Sukumar, N.; Prévost, J. H., Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation, Int. J. Solids Struct., 40, 7513-7537 (2003) · Zbl 1063.74102
[4] Stolarska, M.; Chopp, D. L.; Moës, N.; Belytschko, T., Modelling crack growth by level sets in the extended finite element method, Internat. J. Numer. Methods Engrg., 51, 943-960 (2001) · Zbl 1022.74049
[5] Budyn, É.; Zi, G.; Moës, N.; Belytschko, T., A method for multiple crack growth in brittle materials without remeshing, Internat. J. Numer. Methods Engrg., 61, 1741-1770 (2004) · Zbl 1075.74638
[6] Sutula, D.; Kerfriden, P.; Dam, T. V.; Bordas, S. P.A., Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications, Eng. Fract. Mech., 191, 257-276 (2018)
[7] Moës, N.; Belytschko, T., Extended finite element method for cohesive crack growth, Eng. Fract. Mech., 69, 813-833 (2002)
[8] Zhang, X. D.; Bui, Q. T., A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modeling in concrete structures, Eng. Comput., 32, 473-497 (2015)
[9] Ferté, G.; Massin, P.; Moës, N., 3D crack propagation with cohesive elements in the extended finite element method, Comput. Methods Appl. Mech. Eng., 300, 347-374 (2016) · Zbl 1425.74413
[10] Menouillard, T.; Song, J. H.; Duan, Q.; Belytschko, T., Time dependent crack tip enrichment for dynamic crack propagation, Int. J. Fract., 162, 33-49 (2010) · Zbl 1425.74442
[11] Xu, D.; Liu, Z.; Liu, X.; Zeng, Q.; Zhuang, Z., Modeling of dynamic crack branching by enhanced extended finite element method, Comput. Mech., 54, 489-502 (2014) · Zbl 1398.74422
[12] Mohammadnejad, T.; Khoei, A. R., An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model, Finite Elem. Anal. Des., 73, 77-95 (2013) · Zbl 1302.74167
[13] Shi, L.; Yu, T. T.; Bui, Q. T., Numerical modeling of hydraulic fracturing in rock mass by XFEM, Soil Mech. Found. Eng., 52, 74-83 (2015)
[14] Feulvarch, E.; Fontaine, M.; Bergheau, J. M., XFEM investigation of a crack path in residual stresses resulting from quenching, Finite Elem. Anal. Des., 75, 62-70 (2013)
[15] Kumar, S.; Singh, I. V.; Mishra, B. K., XFEM simulation of stable crack growth using J-R curve under finite strain plasticity, Int. J. Mech. Mater. Des., 10, 165-177 (2014)
[16] Bui, Q. T.; Zhang, C., Analysis of generalized dynamic intensity factors of cracked magnetoelectroelastic solids by X-FEM, Finite Elem. Anal. Des., 69, 19-36 (2013)
[17] Liu, P.; Yu, T. T.; Bui, Q. T.; Zhang, C.; Xu, Y.; Lim, C. W., Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method, Int. J. Solids Struct., 51, 2167-2182 (2014)
[18] Gracie, R.; Belytschko, T., An adaptive concurrent multiscale method for the dynamic simulation of dislocations, Internat. J. Numer. Methods Engrg., 86, 575-597 (2011) · Zbl 1216.74021
[19] Holl, M.; Loehnert, S.; Wriggers, P., An adaptive multiscale method for crack propagation and crack coalescence, Internat. J. Numer. Methods Engrg., 93, 1, 23-51 (2013) · Zbl 1352.74281
[20] Vernerey, F. J.; Kabiri, M., Adaptive concurrent multiscale model for fracture and crack propagation in heterogeneous media, Comput. Methods Appl. Mech. Eng., 276, 566-588 (2014) · Zbl 1423.74930
[21] Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M., An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems, Comput. Mech., 62, 1087-1106 (2018) · Zbl 1469.74108
[22] Yu, T. T.; Bui, T. Q., Numerical simulation of 2-D weak and strong discontinuities by a novel approach based on XFEM with local mesh refinement, Comput. Struct., 196, 112-133 (2018)
[23] Wang, Z.; Yu, T. T.; Bui, T. Q.; Tanaka, S.; Zhang, Ch.; Hirose, S.; Curiel-Sosa, J. L., 3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks, Comput. Methods Appl. Mech. Eng., 313, 375-405 (2017) · Zbl 1439.74374
[24] Loehnert, S.; Prange, C.; Wriggers, P., Error controlled adaptive multiscale XFEM simulation of cracks, Int. J. Fract., 178, 147-156 (2012)
[25] Pannachet, T.; Sluys, L. J.; Askes, H., Error estimation and adaptivity for discontinuous failure, Internat. J. Numer. Methods Engrg., 78, 528-563 (2009) · Zbl 1183.74304
[26] Jin, Y.; González-Estrada, O. A.; Pierard, O.; Bordas, S. P.A., Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation, Comput. Methods Appl. Mech. Eng., 318, 319-348 (2017) · Zbl 1439.74353
[27] Luycker, E. De.; Benson, D. J.; Belytschko, T.; Bazilevs, Y.; Hsu, M. C., XFEM in isogeometric analysis for linear fracture mechanics, Internat. J. Numer. Methods Engrg., 87, 6, 541-565 (2011) · Zbl 1242.74105
[28] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[29] Schulte, J.; Dittmann, M.; Eugster, S. R.; Hesch, S.; Reinicke, T.; dell’sIsola, F.; Hesch, C., Isogeometric analysis of fiber reinforced composites using Kirchhoff-Love shell elements, Comput. Methods Appl. Mech. Eng., 362, Article 112845 pp. (2020) · Zbl 1439.74093
[30] Khatir, S.; Tiachacht, S.; Thanh, C. L.; Bui, T. Q.; Abdel Wahab, M., Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator, Compos. Struct., 230, Article 111509 pp. (2019)
[31] Le, T. C.; Ferreira, A. J.M.; Abdel Wahab, M., A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis, Thin-Walled Struct., 145, Article 106427 pp. (2019)
[32] Le, T. C.; Tran, L. V.; Bui, T. Q.; Nguyen, H. X.; Abdel Wahab, M., Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates, Compos. Struct., 221, Article 110838 pp. (2019)
[33] Ghorashi, S. S.; Valizadeh, N.; Mohammadi, S., Extended isogeometric analysis for simulation of stationary and propagating cracks, Internat. J. Numer. Methods Engrg., 89, 9, 1069-1101 (2012) · Zbl 1242.74119
[34] Bhardwaj, G.; Singh, I. V.; Mishra, B. K.; Bui, Q. T., Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions, Compos. Struct., 126, 347-359 (2015)
[35] Yin, S. H.; Yu, T. T.; Bui, T. Q.; Zheng, X. J.; Gu, S. T., Static and dynamic fracture analysis in elastic solids using a multiscale extended isogeometric analysis, Eng. Fract. Mech., 207, 109-130 (2019)
[36] Singh, S. K.; Singh, I. V.; Mishra, B. K.; Bhardwaj, G.; Singh, S. K., Analysis of cracked plate using higher-order shear deformation theory: Asymptotic crack-tip fields and XIGA implementation, Comput. Methods Appl. Mech. Eng., 336, 594-639 (2018) · Zbl 1440.74366
[37] Liu, S.; Yu, T. T.; Van Lich, L.; Yin, S. H.; Bui, T. Q., Size effect on cracked functional composite micro-plates by an XIGA-based effective approach, Meccanica, 53, 10, 2637-2658 (2018) · Zbl 1397.74014
[38] Khatir, S.; Abdel Wahab, M., Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm, Eng. Fract. Mech., 205, 285-300 (2019)
[39] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Eng., 199, 5, 229-263 (2010) · Zbl 1227.74123
[40] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. D, 29, 7, 485-498 (2012) · Zbl 1252.65030
[41] Wang, J.; Yang, Z.; Jin, L.; Deng, J.; Chen, F., Parallel and adaptive surface reconstruction based on implicit PHT-splines, Comput. Aided Geom. D, 28, 8, 463-474 (2011) · Zbl 1244.65029
[42] Zhang, J.; Li, X., Local refinement for analysis-suitable++ T-splines, Comput. Methods Appl. Mech. Eng., 342, 32-45 (2018) · Zbl 1440.65022
[43] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Des., 30, 3, 331-356 (2013) · Zbl 1264.41011
[44] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Eng., 269, 471-514 (2014) · Zbl 1296.65021
[45] Bekele, Y. W.; Kvamsdal, T.; Kvarving, A. M.; Nordal, S., Adaptive isogeometric finite element analysis of steady-state groundwater flow, Int. J. Numer. Anal. Methods Geomech., 40, 5, 738-765 (2016)
[46] Johannessen, K. A.; Kumar, M.; Kvamsdal, T., Divergence-conforming discretization for stokes problem on locally refined meshes using LR B-splines, Comput. Methods Appl. Mech. Eng., 293, 38-70 (2015) · Zbl 1423.76242
[47] Gu, J. M.; Yu, T. T.; Lich, L. V.; Nguyen, T. T.; Bui, T. Q., Adaptive multi-patch isogeometric analysis based on locally refined B-splines, Comput. Methods Appl. Mech. Eng., 339, 704-738 (2018) · Zbl 1440.65205
[48] Gu, J. M.; Yu, T. T.; Lich, L. V.; Nguyen, T. T.; Tanaka, S.; Bui, T. Q., Multi-inclusions modeling by adaptive XIGA based on LR B-splines and multiple level sets, Finite Elem. Anal. Des., 148, 48-66 (2018)
[49] Chen, X.; Gu, J. M.; Yu, T. T.; Qiu, L.; Bui, T. Q., Numerical simulation of arbitrary holes in orthotropic media by an efficient computational method based on adaptive XIGA, Compos. Struct., 229, Article 111387 pp. (2019)
[50] Gu, J. M.; Yu, T. T.; Lich, L. V.; Nguyen, T. T.; Yang, Y.; Bui, T. Q., Fracture modeling with the adaptive XIGA based on locally refined B-splines, Comput. Methods Appl. Mech. Eng., 354, 527-567 (2019) · Zbl 1441.74204
[51] Gu, J. M.; Yu, T. T.; Lich, L. V.; Tanaka, S.; Qiu, L.; Bui, T. Q., Adaptive orthotropic XIGA for fracture analysis of composites, Composites B, 176, Article 107259 pp. (2019)
[52] Nguyen-Thanh, N.; Zhou, K., Extended isogeometric analysis based on PHT-splines for crack propagation near inclusions, Internat. J. Numer. Methods Engrg., 112, 1777-1800 (2017)
[53] Yang, H. S.; Dong, C. Y., Adaptive extended isogeometric analysis based on PHT-splines for thin cracked plates and shells with Kirchhoff-Love theory, Appl. Math. Model., 76, 759-799 (2019) · Zbl 1481.74682
[54] Videla, J.; Contreras, F.; Nguyen, H. X.; Atroshchenko, E., Application of PHT-splines in bending and vibration analysis of cracked Kirchhoff-Love plates, Comput. Methods Appl. Mech. Eng., 361, Article 112754 pp. (2020) · Zbl 1442.74118
[55] Li, W.; Nguyen-Thanh, N.; Huang, J.; Zhou, K., Adaptive analysis of crack propagation in thin-shell structures via an isogeometric-meshfree moving least-squares approach, Comput. Methods Appl. Mech. Eng., 358, Article 112613 pp. (2020) · Zbl 1441.74210
[56] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24, 2, 337-357 (1987) · Zbl 0602.73063
[57] Mohammadi, S., XFEM Fracture Analysis of Composites (2012), John Wiley & Sons Ltd
[58] Asadpoure, A.; Mohammadi, S., Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method, Internat. J. Numer. Methods Engrg., 69, 2150-2172 (2007) · Zbl 1194.74358
[59] Lekhnitskii, S. G., Theory of an Anisotropic Elastic Body (1963), Holden-Day: Holden-Day San Francisco · Zbl 0119.19004
[60] Prange, C.; Loehnert, S.; Wriggers, P., Error estimation for crack simulations using the XFEM, Int. J. Numer. Methods Eng., 91, 1459-1474 (2012)
[61] Erdogan, F.; Sih, G. C., On the crack extension in plates under plane loading and transverse shear, J. Basic Eng., 85, 519-527 (1963)
[62] Saouma, V. E.; Ayari, M. L.; Leavell, D. A., Mixed mode crack propagation in homogenous anisotropic solids, Eng. Fract. Mech., 27, 2s, 171-184 (1987)
[63] Cahill, L. M.A.; Natarajan, S.; Bordas, S. P.A.; O’Higgins, R. M.; McCarthy, C. T., An experimental/numerical investigation into the main driving force for crack propagation in uni-directional fibre-reinforced composite laminae, Compos. Struct., 107, 119-130 (2014)
[64] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[65] Nguyen, V. P., An object-oriented approach to the extended finite element method with applications to fracture mechanics (2005), Hochiminh City University of Technology, (Master thesis)
[66] Anderson, T. L., Fracture Mechanics-Fundamentals and Applications (1995), CRC: CRC Boca Raton, FL · Zbl 0999.74001
[67] Nguyen-Xuan, H.; Liu, G. R.; Bordas, S.; Natarajan, S.; Rabczuk, T., An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order, Comput. Methods Appl. Mech. Eng., 253, 252-273 (2013) · Zbl 1297.74126
[68] Nguyen, B. H.; Tran, H. D.; Anitescu, C.; Zhuang, X.; Rabczuk, T., An isogeometric symmetric Galerkin boundary element method for two-dimensional crack problems, Comput. Methods Appl. Mech. Eng., 306, 252-275 (2016) · Zbl 1436.74083
[69] Sumi, Y.; Yang, C.; Wang, Z., Morphological aspects of fatigue crack propagation. Part II - efiects of stress biaxiality and welding residual stresses (1995), Department of Naval Architecture and Ocean Engineering, Yokohama National University: Department of Naval Architecture and Ocean Engineering, Yokohama National University Japan
[70] Nguyen, T. N.; Bui, Q. T.; Zhang, Ch.; Truong, T. T., Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method, Eng. Anal. Bound Elem., 44, 87-97 (2014) · Zbl 1297.74108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.